Integral power sums of Fourier coefficients of symmetric square $L$-functions
HTML articles powered by AMS MathViewer
- by Xiaoguang He
- Proc. Amer. Math. Soc. 147 (2019), 2847-2856
- DOI: https://doi.org/10.1090/proc/14516
- Published electronically: March 26, 2019
- PDF | Request permission
Abstract:
Let $f(z)$ be a holomorphic Hecke eigenform of even weight $k$ for $\operatorname {SL}(2,\mathbb {Z})$, and denote $L(s, \mathrm {sym}^2f)$ be the corresponding symmetric square $L$-function associated to $f$. Suppose that $\lambda _{\mathrm {sym}^2f} (n)$ is the $n$th normalized Fourier coefficient of $L(s, \mathrm {sym}^2f)$. In this paper, we investigate the sum $\sum _{n\leq x}\lambda ^j_{\mathrm {sym}^2f}(n)$ for $j=2,3,4$, and get some new results which improve the previous results.References
- J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017), no. 1, 205–224. MR 3556291, DOI 10.1090/jams/860
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- O. M. Fomenko, Identities involving coefficients of automorphic L-functions, J. Math. 57 (2005), 494–505.
- O. M. Fomenko, Mean value theorems for automorphic $L$-functions, Algebra i Analiz 19 (2007), no. 5, 246–264 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 5, 853–866. MR 2381948, DOI 10.1090/S1061-0022-08-01024-8
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066
- Aleksandar Ivić, Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar. 15 (1980), no. 1-3, 157–181. MR 681438
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815. MR 623137, DOI 10.2307/2374050
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- Henry H. Kim and Freydoon Shahidi, Functorial products for $\textrm {GL}_2\times \textrm {GL}_3$ and the symmetric cube for $\textrm {GL}_2$, Ann. of Math. (2) 155 (2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart. MR 1923967, DOI 10.2307/3062134
- Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177–197. MR 1890650, DOI 10.1215/S0012-9074-02-11215-0
- Huixue Lao, On the fourth moment of coefficients of symmetric square $L$-function, Chinese Ann. Math. Ser. B 33 (2012), no. 6, 877–888. MR 2996556, DOI 10.1007/s11401-012-0746-8
- Huixue Lao, Mark McKee, and Yangbo Ye, Asymptotics for cuspidal representations by functoriality from $GL(2)$, J. Number Theory 164 (2016), 323–342. MR 3474392, DOI 10.1016/j.jnt.2016.01.008
- Huixue Lao and Ayyadurai Sankaranarayanan, The average behavior of Fourier coefficients of cusp forms over sparse sequences, Proc. Amer. Math. Soc. 137 (2009), no. 8, 2557–2565. MR 2497466, DOI 10.1090/S0002-9939-09-09855-4
- Huixue Lao and Ayyadurai Sankaranarayanan, The distribution of Fourier coefficients of cusp forms over sparse sequences, Acta Arith. 163 (2014), no. 2, 101–110. MR 3200164, DOI 10.4064/aa163-2-1
- Y.-K. Lau, G.-S. Lü, and J. Wu, Integral power sums of Hecke eigenvalues, Acta Arith. 150 (2011), no. 2, 193–207. MR 2836386, DOI 10.4064/aa150-2-7
- Kohji Matsumoto, The mean values and the universality of Rankin-Selberg $L$-functions, Number theory (Turku, 1999) de Gruyter, Berlin, 2001, pp. 201–221. MR 1822011
- R. M. Nunes, On the subconvexity estimate for self-dual $GL(3)$ $L$-functions in the $t$-aspect, arXiv preprint arXiv:1703.04424v1 (2017).
- Alberto Perelli, General $L$-functions, Ann. Mat. Pura Appl. (4) 130 (1982), 287–306. MR 663975, DOI 10.1007/BF01761499
- Zeév Rudnick and Peter Sarnak, Zeros of principal $L$-functions and random matrix theory, Duke Math. J. 81 (1996), no. 2, 269–322. A celebration of John F. Nash, Jr. MR 1395406, DOI 10.1215/S0012-7094-96-08115-6
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, Third symmetric power $L$-functions for $\textrm {GL}(2)$, Compositio Math. 70 (1989), no. 3, 245–273. MR 1002045
- Hengcai Tang, Estimates for the Fourier coefficients of symmetric square $L$-functions, Arch. Math. (Basel) 100 (2013), no. 2, 123–130. MR 3020126, DOI 10.1007/s00013-013-0481-8
Bibliographic Information
- Xiaoguang He
- Affiliation: Department of Mathematics, Shandong University, Jinan, Shandong, 250100, People’s Republic of China
- MR Author ID: 1182917
- ORCID: 0000-0003-2159-762X
- Email: hexiaoguangsdu@gmail.com
- Received by editor(s): June 18, 2018
- Received by editor(s) in revised form: October 30, 2018
- Published electronically: March 26, 2019
- Additional Notes: The author is grateful to the China Scholarship Council (CSC) for supporting his studies at The Pennsylvania State University.
- Communicated by: Amanda Folsom
- © Copyright 2019 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 147 (2019), 2847-2856
- MSC (2010): Primary 11F30, 11F11, 11F66
- DOI: https://doi.org/10.1090/proc/14516
- MathSciNet review: 3973888