Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Damped and driven breathers and metastability


Authors: Daniel A. Caballero and C. Eugene Wayne
Journal: Quart. Appl. Math. 82 (2024), 7-33
MSC (2020): Primary 70H14, 37J25, 37J46
DOI: https://doi.org/10.1090/qam/1650
Published electronically: March 23, 2023
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove the existence of a new family of periodic solutions for discrete, nonlinear Schrödinger equations subject to spatially localized driving and damping. They provide an alternate description of the metastable behavior in such lattice systems which agrees with previous predictions for the evolution of metastable states while providing more accurate approximations to these states. We analyze the stability of these breathers, finding a very small positive eigenvalue whose eigenvector lies almost tangent to the surface of the cylinder formed by the family of breathers. This causes solutions to slide along the cylinder without leaving its neighborhood for very long times.


References [Enhancements On Off] (What's this?)

References
  • Jean-Pierre Eckmann, Claude-Alain Pillet, and Luc Rey-Bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Statist. Phys. 95 (1999), no. 1-2, 305–331. MR 1705589, DOI 10.1023/A:1004537730090
  • Stefano Iubini, Stefano Lepri, Roberto Livi, Antonio Politi, and Paolo Politi, Nonequilibrium phenomena in nonlinear lattices: from slow relaxation to anomalous transport, Emerging frontiers in nonlinear science, Nonlinear Syst. Complex., vol. 32, Springer, Cham, [2020] ©2020, pp. 185–203. MR 4180850, DOI 10.1007/978-3-030-44992-6_{8}
  • C. Danieli, D. K. Campbell, and S. Flach, Intermittent many-body dynamics at equilibrium, Phys. Rev. E 95 (2017), 060202.
  • Carlo Danieli, Thudiyangal Mithun, Yagmur Kati, David K. Campbell, and Sergej Flach, Dynamical glass in weakly nonintegrable Klein-Gordon chains, Phys. Rev. E 100 (2019), no. 3, 032217, 13. MR 4018844, DOI 10.1103/physreve.100.032217
  • Martin Hairer and Jonathan C. Mattingly, Slow energy dissipation in anharmonic oscillator chains, Comm. Pure Appl. Math. 62 (2009), no. 8, 999–1032. MR 2531551, DOI 10.1002/cpa.20280
  • Salvatore D. Pace and David K. Campbell, Behavior and breakdown of higher-order Fermi-Pasta-Ulam-Tsingou recurrences, Chaos 29 (2019), no. 2, 023132, 15. MR 3916470, DOI 10.1063/1.5079659
  • K. Ø. Rasmussen, T. Cretegny, P. G. Kevrekidis, and N. Grønbech-Jensen, Statistical mechanics of a discrete nonlinear system, Phys. Rev. Lett. 84 (2000), 3740–3743.
  • U. Levy and Y. Silberberg, Equilibrium temperatures of discrete nonlinear systems, Phys. Rev. B 98 (2018), 060303.
  • Jean-Pierre Eckmann and C. Eugene Wayne, Breathers as metastable states for the discrete NLS equation, Discrete Contin. Dyn. Syst. 38 (2018), no. 12, 6091–6103. MR 3917802, DOI 10.3934/dcds.2018136
  • S. Flach and A. V. Gorbach, Discrete breathers – advances in theory and applications, Phys. Rep. 467 (2008), no. 1, 1–116.
  • Jean-Pierre Eckmann and C. Eugene Wayne, Decay of Hamiltonian breathers under dissipation, Comm. Math. Phys. 380 (2020), no. 1, 71–102. MR 4166624, DOI 10.1007/s00220-020-03848-4
  • H. Hennig and R. Fleischmann, Nature of self-localization of Bose-Einstein condensates in optical lattices, Phys. Rev. A 87 (2013), 033605.
  • R. Livi, R. Franzosi, and G.-L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett. 97 (2006), 060401.
  • N. Cuneo, J.-P. Eckmann, and C. Poquet, Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors, Nonlinearity 28 (2015), no. 7, 2397–2421. MR 3366649, DOI 10.1088/0951-7715/28/7/2397
  • J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon ^2u_{xx}-f(u)$, Comm. Pure Appl. Math. 42 (1989), no. 5, 523–576. MR 997567, DOI 10.1002/cpa.3160420502
  • Jack Carr and Robert Pego, Invariant manifolds for metastable patterns in $u_t=\epsilon ^2u_{xx}-f(u)$, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), no. 1-2, 133–160. MR 1076358, DOI 10.1017/S0308210500031425
  • Robert L. Pego and Michael I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), no. 2, 305–349. MR 1289328, DOI 10.1007/BF02101705
  • U. Peschel, O. Egorov, and F. Lederer, Discrete cavity solitons, Opt. Lett. 29 (2004), no. 16, 1909–1911.
  • J. E. Prilepsky, A. V. Yulin, M. Johansson, and S. A. Derevyanko, Discrete solitons in coupled active lasing cavities, Opt. Lett. 37 (2012), no. 22, 4600–4602.
  • K. N. Efremidis and N. D. Christodoulides, Discrete Ginzburg-Landau solitons, Phys. Rev. E 67 (2003), 026606.
  • D. Hennig, Periodic, quasiperiodic, and chaotic localized solutions of a driven, damped nonlinear lattice, Phys. Rev. E 59 (1999), 1637–1645.
  • J. L. Marín, F. Falo, P. J. Martínez, and L. M. Floría, Discrete breathers in dissipative lattices, Phys. Rev. E 63 (2001), 066603.
  • Jacques-Alexandre Sepulchre and Robert S. MacKay, Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity 10 (1997), no. 3, 679–713. MR 1448582, DOI 10.1088/0951-7715/10/3/006
  • R. Khomeriki, Nonlinear band gap transmission in optical waveguide arrays, Phys. Rev. Lett. 92 (2004), 063905.
  • P. Maniadis, G. Kopidakis, and S. Aubry, Energy dissipation threshold and self-induced transparency in systems with discrete breathers, Phys. D 216 (2006), no. 1, 121–135. MR 2230499, DOI 10.1016/j.physd.2006.01.023
  • V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in $\mathcal {PT}$-symmetric systems, Rev. Mod. Phys. 88 (2016), 035002.
  • L. Jin and Z. Song, Solutions of $\mathcal {P}\mathcal {T}$-symmetric tight-binding chain and its equivalent hermitian counterpart, Phys. Rev. A 80 (2009), 052107.
  • Y. N. Joglekar, D. Scott, M. Babbey, and A. Saxena, Robust and fragile $\mathcal {PT}$-symmetric phases in a tight-binding chain, Phys. Rev. A 82 (2010), 030103.
  • G. Theocharis, M. Kavousanakis, P. G. Kevrekidis, C. Daraio, M. A. Porter, and I. G. Kevrekidis, Localized breathing modes in granular crystals with defects, Phys. Rev. E 80 (2009), 066601.
  • P. Panayotaros and F. Rivero. Multi-peak breather stability in a dissipative discrete Nonlinear Schrödinger (NLS) equation, Journal of Nonlinear Optical Physics & Materials 23 (2014), 1450044.
  • R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994), no. 6, 1623–1643. MR 1304442, DOI 10.1088/0951-7715/7/6/006
  • S. Flach and C. R. Willis, Discrete breathers, Phys. Rep. 295 (1998), no. 5, 181–264. MR 1607320, DOI 10.1016/S0370-1573(97)00068-9
  • P. G. Kevrekidis, K. Ø. Rasmussen, and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Internat. J. Modern Phys. B 15 (2001), no. 21, 2833–2900.
  • Noé Cuneo, Jean-Pierre Eckmann, and C. Eugene Wayne, Energy dissipation in Hamiltonian chains of rotators, Nonlinearity 30 (2017), no. 11, R81–R117. MR 3718728, DOI 10.1088/1361-6544/aa85d6
  • J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, The discrete self-trapping equation, Phys. D 16 (1985), no. 3, 318–338. MR 805707, DOI 10.1016/0167-2789(85)90012-0

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2020): 70H14, 37J25, 37J46

Retrieve articles in all journals with MSC (2020): 70H14, 37J25, 37J46


Additional Information

Daniel A. Caballero
Affiliation: Department of Physics, University of Illinois Urbana-Champaign, 1110 W Green Street Loomis, Urbana, IL 61801
ORCID: 0000-0002-3870-560X
Email: dac8@illinois.edu

C. Eugene Wayne
Affiliation: Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, MA 02215
MR Author ID: 180980
Email: cew@bu.edu

Received by editor(s): October 25, 2022
Received by editor(s) in revised form: December 20, 2022
Published electronically: March 23, 2023
Additional Notes: The research of the second author was supported in part by NSF grant DMS-18133.
Dedicated: Dedicated to Bob Pego, with admiration and best wishes for many more years as a leader in the application of dynamical systems ideas to PDEs
Article copyright: © Copyright 2023 Brown University