A location invariant moment-type estimator II
Authors:
Cheng-Xiu Ling, Zuoxiang Peng and Saralees Nadarajah
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 77 (2007).
Journal:
Theor. Probability and Math. Statist. 77 (2008), 177-189
MSC (2000):
Primary 60F99
DOI:
https://doi.org/10.1090/S0094-9000-09-00756-X
Published electronically:
January 21, 2009
MathSciNet review:
2432781
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The moment estimator (Dekkers et al. (1989)) has been used in extreme value theory to estimate the tail index, but it is not location invariant. The location invariant Hill-type estimator (Fraga Alves (2001)) is only suitable for estimating positive indices. In this paper, a new moment-type estimator is studied, which is location invariant. This new estimator is based on the original moment-type estimator, but it is made location invariant by a random shift. Its asymptotic normality is derived, in a semiparametric setup.
- 1. Shihong Cheng and Jiazhu Pan, Asymptotic expansions of estimators for the tail index with applications, Scand. J. Statist. 25 (1998), no. 4, 717–728. MR 1666796, https://doi.org/10.1111/1467-9469.00131
- 2. A. Cuntz, E. Haeusler, and J. Segers, Edgeworth expansions for the distribution function of the Hill estimator, Discussion Paper, vol. 8, Center for Economic Research, Tilburg University, 2003.
- 3. Laurens de Haan and Ulrich Stadtmüller, Generalized regular variation of second order, J. Austral. Math. Soc. Ser. A 61 (1996), no. 3, 381–395. MR 1420345
- 4. A. L. M. Dekkers, J. H. J. Einmahl, and L. de Haan, A moment estimator for the index of an extreme-value distribution, Ann. Statist. 17 (1989), no. 4, 1833–1855. MR 1026315, https://doi.org/10.1214/aos/1176347397
- 5. Holger Drees, A general class of estimators of the extreme value index, J. Statist. Plann. Inference 66 (1998), no. 1, 95–112. MR 1616999, https://doi.org/10.1016/S0378-3758(97)00076-1
- 6. Zhaozhi Fan, Estimation problems for distributions with heavy tails, J. Statist. Plann. Inference 123 (2004), no. 1, 13–40. MR 2058119, https://doi.org/10.1016/S0378-3758(03)00142-3
- 7. M. I. Fraga Alves, A location invariant Hill-type estimator, Extremes 4 (2001), no. 3, 199–217 (2002). MR 1907061, https://doi.org/10.1023/A:1015226104400
- 8. M. Ivette Gomes and M. João Martins, Generalizations of the Hill estimator-asymptotic versus finite sample behaviour, J. Statist. Plann. Inference 93 (2001), no. 1-2, 161–180. MR 1822394, https://doi.org/10.1016/S0378-3758(00)00201-9
- 9. M. Ivette Gomes and Orlando Oliveira, Censoring estimators of a positive tail index, Statist. Probab. Lett. 65 (2003), no. 3, 147–159. MR 2018025, https://doi.org/10.1016/j.spl.2003.07.011
- 10. Peter Hall, On estimating the endpoint of a distribution, Ann. Statist. 10 (1982), no. 2, 556–568. MR 653530
- 11. Bruce M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975), no. 5, 1163–1174. MR 0378204
- 12. Jiazhu Pan, Some results on estimation of the tail index of a distribution, Chinese Ann. Math. Ser. B 19 (1998), no. 2, 239–248. A Chinese summary appears in Chinese Ann. Math. Ser. A 19 (1998), no. 2, 284. MR 1655939
- 13. L. Peng, Asymptotically unbiased estimators for the extreme-value index, Statist. Probab. Lett. 38 (1998), no. 2, 107–115. MR 1627906, https://doi.org/10.1016/S0167-7152(97)00160-0
- 14. Zuo Xiang Peng, An extension of a Pickands-type estimator, Acta Math. Sinica (Chin. Ser.) 40 (1997), no. 5, 759–762 (Chinese, with English and Chinese summaries). MR 1612631
- 15. V. V. Petrov, Sums of independent random variables, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by A. A. Brown; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. MR 0388499
- 16. James Pickands III, Statistical inference using extreme order statistics, Ann. Statist. 3 (1975), 119–131. MR 0423667
- 17. Y. Qi and S. Cheng, Convergence of Pickands-type estimators, Chinese Sci. Bull. 37 (1992), 1409-1413.
- 18. Johan Segers, Abelian and Tauberian theorems on the bias of the Hill estimator, Scand. J. Statist. 29 (2002), no. 3, 461–483. MR 1925570, https://doi.org/10.1111/1467-9469.00301
- 19. Johan Segers, Generalized Pickands estimators for the extreme value index, J. Statist. Plann. Inference 128 (2005), no. 2, 381–396. MR 2102765, https://doi.org/10.1016/j.jspi.2003.11.004
- 20. Richard L. Smith, Maximum likelihood estimation in a class of nonregular cases, Biometrika 72 (1985), no. 1, 67–90. MR 790201, https://doi.org/10.1093/biomet/72.1.67
- 21. Richard L. Smith, Estimating tails of probability distributions, Ann. Statist. 15 (1987), no. 3, 1174–1207. MR 902252, https://doi.org/10.1214/aos/1176350499
- 22. Richard L. Smith and Ishay Weissman, Maximum likelihood estimation of the lower tail of a probability distribution, J. Roy. Statist. Soc. Ser. B 47 (1985), no. 2, 285–298. MR 816094
- 23. Z. Tsourti and I. Panaretos, Extreme value index estimators and smoothing alternatives: review and simulation comparison, Technical Report, vol. 149, Department of Statistics, Athens University of Economics and Business, 2001.
- 24. Xiao Qian Wang and Shi Hong Cheng, General regular variation of 𝑛-th order and the 2nd order Edgeworth expansion of the extreme value distribution. I, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 5, 1121–1130. MR 2176324, https://doi.org/10.1007/s10114-004-0486-0
- 25. Seokhoon Yun, On a generalized Pickands estimator of the extreme value index, J. Statist. Plann. Inference 102 (2002), no. 2, 389–409. Silver jubilee issue. MR 1896495, https://doi.org/10.1016/S0378-3758(01)00100-8
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60F99
Retrieve articles in all journals with MSC (2000): 60F99
Additional Information
Cheng-Xiu Ling
Affiliation:
Department of Mathematics, Southwest Normal University, Chongqing 400715, People’s Republic of China
Zuoxiang Peng
Affiliation:
Department of Mathematics, Southwest Normal University, Chongqing 400715, People’s Republic of China
Email:
pzx@swu.edu.cn
Saralees Nadarajah
Affiliation:
Department of Statistics, University of Nebraska–Lincoln, Lincoln, Nebraska 68583
Email:
snadaraj@unlserve.unl.edu
DOI:
https://doi.org/10.1090/S0094-9000-09-00756-X
Keywords:
Extreme value index,
location invariant property,
moment estimation,
asymptotic normality,
order statistics,
regular varying functions
Received by editor(s):
November 29, 2005
Published electronically:
January 21, 2009
Article copyright:
© Copyright 2009
American Mathematical Society