On reflexive norms for the direct product of Banach spaces
HTML articles powered by AMS MathViewer
- by Robert Schatten
- Trans. Amer. Math. Soc. 54 (1943), 498-506
- DOI: https://doi.org/10.1090/S0002-9947-1943-0009086-9
- PDF | Request permission
References
- S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- Mahlon M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317. MR 3446, DOI 10.1090/S0002-9904-1941-07451-3 D. Milman, On some criteria for the regularity of spaces of type $(B)$, C. R. (Doklady) Acad. Sci. URSS. vol. 20 (1938) pp. 243-246.
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, DOI 10.1215/S0012-7094-39-00522-3
- Robert Schatten, On the direct product of Banach spaces, Trans. Amer. Math. Soc. 53 (1943), 195–217. MR 7568, DOI 10.1090/S0002-9947-1943-0007568-7
Bibliographic Information
- © Copyright 1943 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 54 (1943), 498-506
- MSC: Primary 46.0X
- DOI: https://doi.org/10.1090/S0002-9947-1943-0009086-9
- MathSciNet review: 0009086