Degree of approximation to functions on a Jordan curve
HTML articles powered by AMS MathViewer
 by J. L. Walsh PDF
 Trans. Amer. Math. Soc. 73 (1952), 447458 Request permission
References

J. L. Walsh, Interpolation and approximation by rational functions, Amer. Math. Soc. Colloquium Publications, vol. 20, New York, 1935.
 J. L. Walsh, Polynomial expansions of functions defined by Cauchy’s integral, J. Math. Pures Appl. (9) 31 (1952), 221–244. MR 51919
 J. L. Walsh, Note on approximation by bounded analytic functions, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 821–826. MR 45206, DOI 10.1073/pnas.37.12.821
 J. L. Walsh and H. Margaret Elliott, Polynomial approximation to harmonic and analytic functions: generalized continuity conditions, Trans. Amer. Math. Soc. 68 (1950), 183–203. MR 33921, DOI 10.1090/S00029947195000339215
 J. L. Walsh, On degree of approximation on a Jordan curve to a function analytic interior to the curve by functions not necessarily analytic interior to the curve, Bull. Amer. Math. Soc. 52 (1946), 449–453. MR 16128, DOI 10.1090/S000299041946085894
 Jack D. Cowan (ed.), Some mathematical questions in biology. III, Lectures on Mathematics in the Life Sciences, Vol. 4, American Mathematical Society, Providence, R.I., 1972. MR 0323374
 I. Edward Block, The Plemelj theory for the class $\Lambda ^*$ of functions, Duke Math. J. 19 (1952), 367–378. MR 49308
Additional Information
 © Copyright 1952 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 73 (1952), 447458
 MSC: Primary 30.0X
 DOI: https://doi.org/10.1090/S00029947195200525058
 MathSciNet review: 0052505