The characters of semisimple Lie groups
HTML articles powered by AMS MathViewer
- by Harish-Chandra
- Trans. Amer. Math. Soc. 83 (1956), 98-163
- DOI: https://doi.org/10.1090/S0002-9947-1956-0080875-7
- PDF | Request permission
References
- Elie Cartan, Sur certaines formes Riemanniennes remarquables des géométries à groupe fondamental simple, Ann. Sci. École Norm. Sup. (3) 44 (1927), 345–467 (French). MR 1509283 (b) J. Math Pures Appl. vol. 8 (1929) pp. 1-33. C. Chevalley, Theory of Lie groups, Princeton University Press, 1946.
- Lars Gårding, Dirichlet’s problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55–72. MR 64979, DOI 10.7146/math.scand.a-10364 I. M. Gelfand and M. A. Naimark, Trudi Mat. Inst. Steklova vol. 36 (1950).
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28–96. MR 44515, DOI 10.1090/S0002-9947-1951-0044515-0
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234–253. MR 62747, DOI 10.1090/S0002-9947-1954-0062747-5
- Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485–528. MR 63376, DOI 10.1090/S0002-9947-1954-0063376-X
- Harish-Chandra, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743–777. MR 72427, DOI 10.2307/2372596
- Harish-Chandra, Representations of semisimple Lie groups. V, Amer. J. Math. 78 (1956), 1–41. MR 82055, DOI 10.2307/2372481
- Harish-Chandra, On the characters of a semisimple Lie group, Bull. Amer. Math. Soc. 61 (1955), 389–396. MR 71715, DOI 10.1090/S0002-9904-1955-09935-X
- Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI 10.2307/1969548
- Fritz John, General properties of solutions of linear elliptic partial differential equations, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Okla., 1951, pp. 113–175. MR 0043990
- Jean-Louis Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65–127 (French). MR 36511
- George Daniel Mostow, A new proof of E. Cartan’s theorem on the topology of semi-simple groups, Bull. Amer. Math. Soc. 55 (1949), 969–980. MR 32656, DOI 10.1090/S0002-9904-1949-09325-4
- Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR 0209834
- E. Stiefel, Über eine Beziehung zwischen geschlossenen Lie’schen Gruppen und diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre Anwendung auf die Aufzählung der einfachen Lie’schen Gruppen, Comment. Math. Helv. 14 (1942), 350–380 (German). MR 7422, DOI 10.1007/BF02565625 B. L. van der Waerden, Moderne Algebra, Berlin, Springer, 1937. H. Weyl, (a) Math. Zeit. vol. 24 (1925) pp. 328-395. (b) The structure and representations of continuous groups, Princeton, The Institute for Advanced Study, 1935. (c) The classical groups, Princeton University Press, 1939.
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 83 (1956), 98-163
- MSC: Primary 17.0X
- DOI: https://doi.org/10.1090/S0002-9947-1956-0080875-7
- MathSciNet review: 0080875