Extreme eigenvalues of $N$-dimensional convolution operators
HTML articles powered by AMS MathViewer
- by Harold Widom
- Trans. Amer. Math. Soc. 106 (1963), 391-414
- DOI: https://doi.org/10.1090/S0002-9947-1963-0145294-7
- PDF | Request permission
References
- Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840 L. Hörmander and J. L. Lions, Sur la completion par rapport à une intégrale de Dirichlet, Math. Scand. 2 (1956), 259-270.
- M. Kac, W. L. Murdock, and G. Szegö, On the eigenvalues of certain Hermitian forms, J. Rational Mech. Anal. 2 (1953), 767–800. MR 59482, DOI 10.1512/iumj.1953.2.52034
- Seymour V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc. 99 (1961), 153–192. MR 120492, DOI 10.1090/S0002-9947-1961-0120492-5
- Seymour V. Parter, On the extreme eigenvalues of truncated Toeplitz matrices, Bull. Amer. Math. Soc. 67 (1961), 191–196. MR 123183, DOI 10.1090/S0002-9904-1961-10563-6
- Seymour V. Parter, On the extreme eigenvalues of Toeplitz matrices, Trans. Amer. Math. Soc. 100 (1961), 263–276. MR 138981, DOI 10.1090/S0002-9947-1961-0138981-6
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Harold Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc. 88 (1958), 491–522. MR 98321, DOI 10.1090/S0002-9947-1958-0098321-8
- Harold Widom, Stable processes and integral equations, Trans. Amer. Math. Soc. 98 (1961), 430–449. MR 121882, DOI 10.1090/S0002-9947-1961-0121882-7
- Harold Widom, Extreme eigenvalues of translation kernels, Trans. Amer. Math. Soc. 100 (1961), 252–262. MR 138980, DOI 10.1090/S0002-9947-1961-0138980-4
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 106 (1963), 391-414
- MSC: Primary 44.25
- DOI: https://doi.org/10.1090/S0002-9947-1963-0145294-7
- MathSciNet review: 0145294