Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Contents of Volume 111, Number 2
HTML articles powered by AMS MathViewer
View front and back matter from the print issue

A generalized Koszul complex. I
David A. Buchsbaum
Trans. Amer. Math. Soc. 111 (1964), 183-196
DOI: https://doi.org/10.1090/S0002-9947-1964-0159859-0
A generalized Koszul complex. II. Depth and multiplicity
David A. Buchsbaum and Dock S. Rim
Trans. Amer. Math. Soc. 111 (1964), 197-224
DOI: https://doi.org/10.1090/S0002-9947-1964-0159860-7
The bilinear relation on open Riemann surfaces
Albert Marden
Trans. Amer. Math. Soc. 111 (1964), 225-239
DOI: https://doi.org/10.1090/S0002-9947-1964-0156961-4
The structure of ideals and point derivations in Banach algebras of Lipschitz functions
Donald R. Sherbert
Trans. Amer. Math. Soc. 111 (1964), 240-272
DOI: https://doi.org/10.1090/S0002-9947-1964-0161177-1
A surface in $S^{3}$ is tame if it can be deformed into each complementary domain
John Hempel
Trans. Amer. Math. Soc. 111 (1964), 273-287
DOI: https://doi.org/10.1090/S0002-9947-1964-0160195-7
Combinatorial equivalence versus topological equivalence
Barry Mazur
Trans. Amer. Math. Soc. 111 (1964), 288-316
DOI: https://doi.org/10.1090/S0002-9947-1964-0202124-3
Holomorphic functions with values in locally convex spaces and applications to integral formulas
Lutz Bungart
Trans. Amer. Math. Soc. 111 (1964), 317-344
DOI: https://doi.org/10.1090/S0002-9947-1964-0157004-9
Oka’s Heftungslemma and the Levi problem for complex spaces
Aldo Andreotti and Raghavan Narasimhan
Trans. Amer. Math. Soc. 111 (1964), 345-366
DOI: https://doi.org/10.1090/S0002-9947-1964-0159961-3