On homogeneous spaces and reductive subalgebras of simple Lie algebras
HTML articles powered by AMS MathViewer
- by A. Sagle and D. J. Winter
- Trans. Amer. Math. Soc. 128 (1967), 142-147
- DOI: https://doi.org/10.1090/S0002-9947-1967-0227325-2
- PDF | Request permission
References
- A. Borel and G. D. Mostow, On semi-simple automorphisms of Lie algebras, Ann. of Math. (2) 61 (1955), 389–405. MR 68531, DOI 10.2307/1969807 E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-244.
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Bertram Kostant, On differential geometry and homogeneous spaces. I, II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 258–261, 354–357. MR 88017, DOI 10.1073/pnas.42.6.354
- Katsumi Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33–65. MR 59050, DOI 10.2307/2372398
- Arthur A. Sagle, On anti-commutative algebras and homogeneous spaces, J. Math. Mech. 16 (1967), 1381–1393. MR 0223500 A. Borel and J. Tits, Groupes réductifs, pp. 659-755, Inst. Hautes Etudes Sci. Paris No. 27, 1965.
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 128 (1967), 142-147
- MSC: Primary 22.80
- DOI: https://doi.org/10.1090/S0002-9947-1967-0227325-2
- MathSciNet review: 0227325