Absolute Tauberian constants for Cesàro means
HTML articles powered by AMS MathViewer
- by Soraya Sherif PDF
- Trans. Amer. Math. Soc. 168 (1972), 233-241 Request permission
Abstract:
This paper is concerned with introducing two inequalities of the form $\sum \nolimits _{n = 0}^\infty {|{\tau _n}} - {a_n}| \leqq KA$ and $\sum \nolimits _{n = 0}^\infty {|{\tau _n}} - {a_n}| \leqq K’B$, where ${\tau _n} = C_n^{(k)} - C_{n - 1}^{(k)},C_n^{(k)}$ denote the Cesàro transform of order $k,K$ and $K’$ are absolute Tauberian constants, $A = \sum \nolimits _{n = 0}^\infty {|\Delta (n{a_n}} )| < \infty ,B = \sum \nolimits _{n = 0}^\infty {|\Delta ((1/n)\sum \nolimits _{v = 1}^{n - 1} {v{a_v}} } )| < \infty$ and $\Delta {u_k} = {u_k} - {u_{k + 1}}$. The constants $K,K’$ will be determined.References
- Ralph Palmer Agnew, Integral transformations and Tauberian constants, Trans. Amer. Math. Soc. 72 (1952), 501–518. MR 47802, DOI 10.1090/S0002-9947-1952-0047802-6
- Ralph Palmer Agnew, Tauberian relations among partial sums, Riesz transforms, and Abel transforms of series, J. Reine Angew. Math. 193 (1954), 94–118. MR 64159, DOI 10.1515/crll.1954.193.94
- K. Anjaneyulu, Tauberian constants for $F(c;\,\mu )$-transforms, Math. Z. 92 (1966), 194–200. MR 193396, DOI 10.1007/BF01111184
- W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. MR 0185155
- Hubert Delange, Sur les théorèmes inverses des procédés sommation des séries divergentes. I, Ann. Sci. École Norm. Sup. (3) 67 (1950), 99–160 (French). MR 0037374, DOI 10.24033/asens.978 M. Fekete, Vizsgálatok az absolut summabilis sorokrol, alkalmazással a Dirichlet—és Fourier—sorokra, Math, és Termész. Ért. 32 (1914), 389-425. —, On the absolute summability $(A)$ of infinite series, Proc. Edinburgh Math. Soc. (2) 8 (1932), 132-134.
- H. Hadwiger, Über ein Distanz-theorem bei der $A$-Limitierung, Comment. Math. Helv. 16 (1944), 209–214 (German). MR 10002, DOI 10.1007/BF02568574 J. M. Hyslop, A Tauberian theorem for absolute summability, J. London Math. Soc. 12 (1937), 176-180.
- Amnon Jakimovski, Tauberian constants for Hausdorff transformations, Bull. Res. Council Israel Sect. F 9F (1961), 175–184 (1961). MR 131087
- K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Arch. Math. 2 (1949), 10–16 (German). MR 32790, DOI 10.1007/BF02036747
- Florence M. Mears, Absolute regularity and the Nörlund mean, Ann. of Math. (2) 38 (1937), no. 3, 594–601. MR 1503356, DOI 10.2307/1968603
- A. Meir, Tauberian estimates concerning the regular Hausdorff and $[J,\,f(x)]$ transformations, Canadian J. Math. 17 (1965), 288–301. MR 172038, DOI 10.4153/CJM-1965-029-0
- C. T. Rajagopal, A generalization of Tauber’s theorem and some Tauberian constants. III, Comment. Math. Helv. 30 (1956), 63–72 (1955). MR 72253, DOI 10.1007/BF02564332
- Soraya Sherif, Tauberian constants for the Riesz transforms of different orders, Math. Z. 82 (1963), no. 4, 283–298. MR 1545836, DOI 10.1007/BF01111396
- Soraya Sherif, Tauberian constants for general triangular matrices and certain special types of Hausdorff means, Math. Z. 89 (1965), 312–323. MR 180783, DOI 10.1007/BF01112163
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 233-241
- MSC: Primary 40D10; Secondary 40G05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294945-0
- MathSciNet review: 0294945