Norm of a derivation on a von Neumann algebra
HTML articles powered by AMS MathViewer
- by P. Gajendragadkar
- Trans. Amer. Math. Soc. 170 (1972), 165-170
- DOI: https://doi.org/10.1090/S0002-9947-1972-0305090-X
- PDF | Request permission
Abstract:
A derivation on an algebra $\mathfrak {A}$ is a linear function $\mathcal {D}:\mathfrak {A} \to \mathfrak {A}$ satisfying $\mathcal {D}(ab) = \mathcal {D}(a)b + a\mathcal {D}(b)$ for all $a,b$ in $\mathfrak {A}$. If there exists an $a$ in $\mathfrak {A}$ such that $\mathcal {D}(b) = ab - ba$ for $b$ in $\mathfrak {A}$, then $\mathcal {D}$ is called the inner derivation induced by $a$. If $\mathfrak {A}$ is a von Neumann algebra, then by a theorem of Sakai [7], every derivation on $\mathfrak {A}$ is inner. In this paper we compute the norm of a derivation on a von Neumann algebra. Specifically we prove that if $\mathfrak {A}$ is a von Neumann algebra acting on a separable Hilbert space $\mathcal {H},T$ is in $\mathfrak {A}$, and ${\mathcal {D}_T}$ is the derivation induced by $T$, then $||{\mathcal {D}_T}|\mathfrak {A}|| = 2\inf \{ ||T - Z||,Z\;{\text {in}}\;{\text {centre}}\;\mathfrak {A}\}$.References
- J. Diximier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- Richard V. Kadison, Unitary invariants for representations of operator algebras, Ann. of Math. (2) 66 (1957), 304–379. MR 89378, DOI 10.2307/1970002
- Richard V. Kadison, Derivations of operator algebras, Ann. of Math. (2) 83 (1966), 280–293. MR 193527, DOI 10.2307/1970433
- Richard V. Kadison, E. Christopher Lance, and John R. Ringrose, Derivations and automorphisms of operator algebras. II, J. Functional Analysis 1 (1967), 204–221. MR 0215111, DOI 10.1016/0022-1236(67)90032-8
- Richard V. Kadison and John R. Ringrose, Derivations and automorphisms of operator algebras, Comm. Math. Phys. 4 (1967), 32–63. MR 206735
- M. A. Naĭmark and S. V. Fomin, Continuous direct sums of Hilbert spaces and some of their applications, Uspehi Mat. Nauk 10 (1955), no. 2(64), 111–142 (Russian). MR 0070985
- Shôichirô Sakai, Derivations of $W^{\ast }$-algebras, Ann. of Math. (2) 83 (1966), 273–279. MR 193528, DOI 10.2307/1970432
- Joseph G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737–747. MR 265952
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 170 (1972), 165-170
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0305090-X
- MathSciNet review: 0305090