## Norm of a derivation on a von Neumann algebra

HTML articles powered by AMS MathViewer

- by P. Gajendragadkar
- Trans. Amer. Math. Soc.
**170**(1972), 165-170 - DOI: https://doi.org/10.1090/S0002-9947-1972-0305090-X
- PDF | Request permission

## Abstract:

A derivation on an algebra $\mathfrak {A}$ is a linear function $\mathcal {D}:\mathfrak {A} \to \mathfrak {A}$ satisfying $\mathcal {D}(ab) = \mathcal {D}(a)b + a\mathcal {D}(b)$ for all $a,b$ in $\mathfrak {A}$. If there exists an $a$ in $\mathfrak {A}$ such that $\mathcal {D}(b) = ab - ba$ for $b$ in $\mathfrak {A}$, then $\mathcal {D}$ is called the inner derivation induced by $a$. If $\mathfrak {A}$ is a von Neumann algebra, then by a theorem of Sakai [7], every derivation on $\mathfrak {A}$ is inner. In this paper we compute the norm of a derivation on a von Neumann algebra. Specifically we prove that if $\mathfrak {A}$ is a von Neumann algebra acting on a separable Hilbert space $\mathcal {H},T$ is in $\mathfrak {A}$, and ${\mathcal {D}_T}$ is the derivation induced by $T$, then $||{\mathcal {D}_T}|\mathfrak {A}|| = 2\inf \{ ||T - Z||,Z\;{\text {in}}\;{\text {centre}}\;\mathfrak {A}\}$.## References

- J. Diximier,
- Richard V. Kadison,
*Unitary invariants for representations of operator algebras*, Ann. of Math. (2)**66**(1957), 304–379. MR**89378**, DOI 10.2307/1970002 - Richard V. Kadison,
*Derivations of operator algebras*, Ann. of Math. (2)**83**(1966), 280–293. MR**193527**, DOI 10.2307/1970433 - Richard V. Kadison, E. Christopher Lance, and John R. Ringrose,
*Derivations and automorphisms of operator algebras. II*, J. Functional Analysis**1**(1967), 204–221. MR**0215111**, DOI 10.1016/0022-1236(67)90032-8 - Richard V. Kadison and John R. Ringrose,
*Derivations and automorphisms of operator algebras*, Comm. Math. Phys.**4**(1967), 32–63. MR**206735** - M. A. Naĭmark and S. V. Fomin,
*Continuous direct sums of Hilbert spaces and some of their applications*, Uspehi Mat. Nauk**10**(1955), no. 2(64), 111–142 (Russian). MR**0070985** - Shôichirô Sakai,
*Derivations of $W^{\ast }$-algebras*, Ann. of Math. (2)**83**(1966), 273–279. MR**193528**, DOI 10.2307/1970432 - Joseph G. Stampfli,
*The norm of a derivation*, Pacific J. Math.**33**(1970), 737–747. MR**265952**

*Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann)*, Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.

## Bibliographic Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**170**(1972), 165-170 - MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0305090-X
- MathSciNet review: 0305090