# Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

## $P$-commutative Banach $^{\ast }$-algebrasHTML articles powered by AMS MathViewer

by Wayne Tiller
Trans. Amer. Math. Soc. 180 (1973), 327-336 Request permission

## Abstract:

Let $A$ be a complex $^ \ast$-algebra. If $f$ is a positive functional on $A$, let ${I_f} = \{ x \in A:f(x^ \ast x) = 0\}$ be the corresponding left ideal of $A$. Set $P = \cap {I_f}$, where the intersection is over all positive functionals on $A$. Then $A$ is called $P$-commutative if $xy - yx \in P$ for all $x,y \in A$. Every commutative $^ \ast$-algebra is $P$-commutative and examples are given of noncommutative $^ \ast$-algebras which are $P$-commutative. Many results are obtained for $P$-commutative Banach $^ \ast$-algebras which extend results known for commutative Banach $^ \ast$-algebras. Among them are the following: If ${A^2} = A$, then every positive functional on $A$ is continuous. If $A$ has an approximate identity, then a nonzero positive functional on $A$ is a pure state if and only if it is multiplicative. If $A$ is symmetric, then the spectral radius in $A$ is a continuous algebra seminorm.
References
• J. W. Baker and J. S. Pym, A remark on continuous bilinear mappings, Proc. Edinburgh Math. Soc. (2) 17 (1970/71), 245–248. MR 303291, DOI 10.1017/S0013091500026961
• Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
• J. W. M. Ford, A square root lemma for Banach $(^{\ast } )$-algebras, J. London Math. Soc. 42 (1967), 521–522. MR 215107, DOI 10.1112/jlms/s1-42.1.521
• J. W. M. Ford, Subalgebras of Banach algebras generated by semigroups, Ph.D. Dissertation, Newcastle upon Tyne, 1966.
• I. S. Murphy, Continuity of positive linear functionals on Banach ${}^{\ast }$-algebras, Bull. London Math. Soc. 1 (1969), 171–173. MR 250079, DOI 10.1112/blms/1.2.171
• M. A. Naĭmark, Normed rings, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR 0355601
• Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
• Satish Shirali, Representability of positive functionals, J. London Math. Soc. (2) 3 (1971), 145–150. MR 276777, DOI 10.1112/jlms/s2-3.1.145
• Nicolas Th. Varopoulos, Continuité des formes linéaires positives sur une algèbre de Banach avec involution, C. R. Acad. Sci. Paris 258 (1964), 1121–1124 (French). MR 161179
Similar Articles
• Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K05
• Retrieve articles in all journals with MSC: 46K05