Inversion formulae for the probability measures on Banach spaces
HTML articles powered by AMS MathViewer
- by G. Gharagoz Hamedani and V. Mandrekar
- Trans. Amer. Math. Soc. 180 (1973), 143-169
- DOI: https://doi.org/10.1090/S0002-9947-1973-0344408-X
- PDF | Request permission
Abstract:
Let $B$ be a real separable Banach space, and let $\mu$ be a probability measure on $\mathcal {B}(B)$, the Borel sets of $B$. The characteristic functional (Fourier transform) $\phi$ of $\mu$, defined by $\phi (y) = \int _B {\exp \{ i(y,x)\} d\mu (x)\;}$ for $y \in {B^\ast }$ (the topological dual of $B$), uniquely determines $\mu$. In order to determine $\mu$ on $\mathcal {B}(B)$, it suffices to obtain the value of $\int _B {G(s)d\mu (s)}$ for every real-valued bounded continuous function $G$ on $B$. Hence an inversion formula for $\mu$ in terms of $\phi$ is obtained if one can uniquely determine the value of $\int _B {G(s)d\mu (s)}$ for all real-valued bounded continuous functions $G$ on $B$ in terms of $\phi$ and $G$. The main efforts of this paper will be to prove such inversion formulae of various types. For the Orlicz space ${E_\alpha }$ of real sequences we establish inversion formulae (Main Theorem II) which properly generalize the work of L. Gross and derive as a corollary the extension of the Main Theorem of L. Gross to ${E_\alpha }$ spaces (Corollary 2.2.12). In Part I we prove a theorem (Main Theorem I) which is Banach space generalization of the Main Theorem of L. Gross by reinterpreting his necessary and sufficient conditions in terms of convergence of Gaussian measures. Finally, in Part III we assume our Banach space to have a shrinking Schauder basis to prove inversion formulae (Main Theorem III) which express the measure directly in terms of $\phi$ and $G$ without the use of extension of $\phi$ as required in the Main Theorems I and II. Furthermore this can be achieved without using the Lévy Continuity Theorem and we hope that one can use this theorem to obtain a direct proof of the Lévy Continuity Theorem.References
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- Kai Lai Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York, 1968. MR 0229268 M. M. Day, Normed linear spaces, 2nd rev. ed., Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.
- Alejandro D. de Acosta, Existence and convergence of probability measures in Banach spaces, Trans. Amer. Math. Soc. 152 (1970), 273–298. MR 267614, DOI 10.1090/S0002-9947-1970-0267614-9
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- Leonard Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 31–42. MR 0212152
- Leonard Gross, Harmonic analysis on Hilbert space, Mem. Amer. Math. Soc. 46 (1963), ii+62. MR 161095
- Leonard Gross, Integration and nonlinear transformations in Hilbert space, Trans. Amer. Math. Soc. 94 (1960), 404–440. MR 112025, DOI 10.1090/S0002-9947-1960-0112025-3
- Leonard Gross, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 372–390. MR 147606, DOI 10.1090/S0002-9947-1962-0147606-6
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- J. Kampé de Fériet, Mesures de probabilité sur les espaces de Banach possédant une base dénombrable, J. Math. Pures Appl. (9) 39 (1960), 119–163 (French). MR 123902
- J. Kuelbs, Gaussian measures on a Banach space, J. Functional Analysis 5 (1970), 354–367. MR 0260010, DOI 10.1016/0022-1236(70)90014-5
- J. Kuelbs and V. Mandrekar, Harmonic analysis on $F$-spaces with a basis, Trans. Amer. Math. Soc. 169 (1972), 113–152. MR 341544, DOI 10.1090/S0002-9947-1972-0341544-8
- J. Kuelbs and V. Mandrekar, Harmonic analysis on certain vector spaces, Trans. Amer. Math. Soc. 149 (1970), 213–231. MR 301162, DOI 10.1090/S0002-9947-1970-0301162-2
- Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- Frédéric Riesz and Béla Sz.-Nagy, Leçons d’analyse fonctionnelle, Akadémiai Kiadó, Budapest, 1953 (French). 2ème éd. MR 0056821
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- V. Sazonov, On characteristic functionals, Teor. Veroyatnost. i Primenen. 3 (1958), 201–205 (Russian, with English summary). MR 0098423
- Adriaan Cornelis Zaanen, Linear analysis. Measure and integral, Banach and Hilbert space, linear integral equations, Interscience Publishers Inc., New York; North-Holland Publishing Co., Amsterdam; P. Noordhoff N. V., Groningen, 1953. MR 0061752
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 143-169
- MSC: Primary 28A40; Secondary 60B05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0344408-X
- MathSciNet review: 0344408