Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function
Author:
K. Michael Day
Journal:
Trans. Amer. Math. Soc. 206 (1975), 224-245
MSC:
Primary 30A08; Secondary 45E10
DOI:
https://doi.org/10.1090/S0002-9947-1975-0379803-8
MathSciNet review:
0379803
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be the finite Toeplitz matrices generated by the Laurent expansion of an arbitrary rational function. An identity is developed for
which may be used to prove that the limit set of the eigenvalues of the
is a point or consists of a finite number of analytic arcs.
- [1] Glen Baxter and Palle Schmidt, Determinants of a certain class of non-Hermitian Toeplitz matrices, Math. Scand. 9 (1961), 122–128. MR 126653, https://doi.org/10.7146/math.scand.a-10630
- [2] Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
- [3] I. I. Hirschman Jr., The spectra of certain Toeplitz matrices, Illinois J. Math. 11 (1967), 145–159. MR 0205070
- [4] Palle Schmidt and Frank Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial, Math. Scand. 8 (1960), 15–38. MR 124665, https://doi.org/10.7146/math.scand.a-10588
- [5] J. L. Ullman, A problem of Schmidt and Spitzer, Bull. Amer. Math. Soc. 73 (1967), 883–885. MR 219986, https://doi.org/10.1090/S0002-9904-1967-11826-3
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A08, 45E10
Retrieve articles in all journals with MSC: 30A08, 45E10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1975-0379803-8
Keywords:
Toeplitz matrices,
Laurent series,
rational functions
Article copyright:
© Copyright 1975
American Mathematical Society