Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function
HTML articles powered by AMS MathViewer
- by K. Michael Day
- Trans. Amer. Math. Soc. 206 (1975), 224-245
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379803-8
- PDF | Request permission
Abstract:
Let ${T_n}(f) = ({a_{i - j}})_{i,j = 0}^n$ be the finite Toeplitz matrices generated by the Laurent expansion of an arbitrary rational function. An identity is developed for $\det ({T_n}(f) - \lambda )$ which may be used to prove that the limit set of the eigenvalues of the ${T_n}(f)$ is a point or consists of a finite number of analytic arcs.References
- Glen Baxter and Palle Schmidt, Determinants of a certain class of non-Hermitian Toeplitz matrices, Math. Scand. 9 (1961), 122–128. MR 126653, DOI 10.7146/math.scand.a-10630
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- I. I. Hirschman Jr., The spectra of certain Toeplitz matrices, Illinois J. Math. 11 (1967), 145–159. MR 205070
- Palle Schmidt and Frank Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial, Math. Scand. 8 (1960), 15–38. MR 124665, DOI 10.7146/math.scand.a-10588
- J. L. Ullman, A problem of Schmidt and Spitzer, Bull. Amer. Math. Soc. 73 (1967), 883–885. MR 219986, DOI 10.1090/S0002-9904-1967-11826-3
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 224-245
- MSC: Primary 30A08; Secondary 45E10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379803-8
- MathSciNet review: 0379803