On the jump of an -recursively enumerable set

Author:
Richard A. Shore

Journal:
Trans. Amer. Math. Soc. **217** (1976), 351-363

MSC:
Primary 02F27

DOI:
https://doi.org/10.1090/S0002-9947-1976-0424544-2

MathSciNet review:
0424544

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the proper definition of the jump operator in -recursion theory and prove a sample theorem: *There is an incomplete* -*r.e. set with jump* *unless there is precisely one nonhyperregular* -*r.e. degree*. Thus we have a theorem in the first order language of Turing degrees with the jump which fails to generalize to all admissible .

**[1]**R. Björn Jensen,*The fine structure of the constructible hierarchy*, Ann. Math. Logic**4**(1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR**309729**, https://doi.org/10.1016/0003-4843(72)90001-0**[2]**R. Jhu,*Contributions to axiomatic recursion theory and related aspects of*-*recursion theory*, Ph. D. Thesis, University of Toronto, 1973.**[3]**G. E. Sacks,*Metarecursion theory*, Sets, Models and Recursion Theory (Proc. Summer School Math. Logic and Tenth Logic Colloq., Leicester, 1965) North - Holland, Amsterdam, 1967, pp. 243–263. MR**0253896****[4]**Gerald E. Sacks,*Post’s problem, admissible ordinals, and regularity*, Trans. Amer. Math. Soc.**124**(1966), 1–23. MR**201299**, https://doi.org/10.1090/S0002-9947-1966-0201299-1**[5]**Gerald E. Sacks,*Higher recursion theory*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990. MR**1080970****[6]**Joseph R. Shoenfield,*Degrees of unsolvability*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. Dedicated to S. C. Kleene; North-Holland Mathematics Studies, No. 2. MR**0340011****[7]**Richard A. Shore,*Splitting an 𝛼-recursively enumerable set*, Trans. Amer. Math. Soc.**204**(1975), 65–77. MR**379154**, https://doi.org/10.1090/S0002-9947-1975-0379154-1**[8]**-,*The recursively enumerable*-*degrees are dense*, Ann. Math. Logic (to appear).**[9]**-,*The irregular and non-hyperregular*-*r.e. degrees*, Israel J. Math. (to appear).**[10]**S. G. Simpson,*Admissible ordinals and recursion theory*, Ph. D. Thesis, M.I.T., 1971.**[11]**Stephen G. Simpson,*Degree theory on admissible ordinals*, Generalized recursion theory (Proc. Sympos., Univ. Oslo, Oslo, 1972), North-Holland, Amsterdam, 1974, pp. 165–193. Studies in Logic and Foundations of Math., Vol. 79. MR**0537203**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
02F27

Retrieve articles in all journals with MSC: 02F27

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1976-0424544-2

Keywords:
-recursion theory,
admissible ordinals,
-recursively enumerable,
-degree,
-jump,
priority arguments

Article copyright:
© Copyright 1976
American Mathematical Society