Sufficient conditions for an operator-valued Feynman-Kac formula
Author:
Michael Dale Grady
Journal:
Trans. Amer. Math. Soc. 223 (1976), 181-203
MSC:
Primary 60J35
DOI:
https://doi.org/10.1090/S0002-9947-1976-0423552-5
MathSciNet review:
0423552
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let E be a locally compact, second countable Hausdorff space and let $X(t)$ be a Markov process with state space E. Sufficient conditions are given for the existence of a solution to the initial value problem, $\partial u/\partial t = Au + V(x) \cdot u,u(0) = f$, where A is the infinitesimal generator of the process X on a certain Banach space and for each $x \in E,V(x)$ is the infinitesimal generator of a ${C_0}$ contraction semigroup on another Banach space.
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. MR 0230022
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- E. B. Dynkin, Markovskie protsessy, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 0193670
- Jerome A. Goldstein, Abstract evolution equations, Trans. Amer. Math. Soc. 141 (1969), 159–185. MR 247524, DOI https://doi.org/10.1090/S0002-9947-1969-0247524-5 R. Griego, Dual random evolutions, Univ. of New Mexico Tech. Report No. 301, September, 1974.
- Richard Griego and Reuben Hersh, Theory of random evolutions with applications to partial differential equations, Trans. Amer. Math. Soc. 156 (1971), 405–418. MR 275507, DOI https://doi.org/10.1090/S0002-9947-1971-0275507-7
- Richard J. Griego and Alberto Moncayo, Random evolutions and piecing out of Markov processes, Bol. Soc. Mat. Mexicana (2) 15 (1970), 22–29. MR 365723
- L. L. Helms, Markov processes with creation of mass, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967), 225–234. MR 220346, DOI https://doi.org/10.1007/BF00532639
- R. Hersh and G. Papanicolaou, Non-commuting random evolutions, and an operator-valued Feynman-Kac formula, Comm. Pure Appl. Math. 25 (1972), 337–367. MR 310940, DOI https://doi.org/10.1002/cpa.3160250307
- M. Kac, On some connections between probability theory and differential and integral equations, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 189–215. MR 0045333 S. Khalili, Bochner measurability, Univ. of Pittsburgh Research Report No. 73-04, 1973.
- Talma Leviatan, On Markov processes with random starting time, Ann. Probability 1 (1973), 223–230. MR 359018, DOI https://doi.org/10.1214/aop/1176996975
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
- Frank S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347–374. MR 123356
- Kôsaku Yosida, Functional analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
- Adriaan Cornelis Zaanen, Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration. MR 0222234
Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J35
Retrieve articles in all journals with MSC: 60J35
Additional Information
Keywords:
Function space integrals,
semigroups of operators,
Markov processes,
random evolutions,
multiplicative operator functionals
Article copyright:
© Copyright 1976
American Mathematical Society