Finiteness in the minimal models of Sullivan
HTML articles powered by AMS MathViewer
- by Stephen Halperin
- Trans. Amer. Math. Soc. 230 (1977), 173-199
- DOI: https://doi.org/10.1090/S0002-9947-1977-0461508-8
- PDF | Request permission
Abstract:
Let X be a 1-connected topological space such that the vector spaces ${\Pi _ \ast }(X) \otimes {\mathbf {Q}}$ and ${H^\ast }(X;{\mathbf {Q}})$ are finite dimensional. Then ${H^\ast }(X;{\mathbf {Q}})$ satisfies Poincaré duality. Set ${\chi _\Pi } = \sum {( - 1)^p}\dim {\Pi _p}(X) \otimes {\mathbf {Q}}$ and ${\chi _c} =$ $\sum {( - 1)^p}\dim {H^p}(X;{\mathbf {Q}})$. Then ${\chi _\Pi } \leqslant 0$ and ${\chi _c} \geqslant 0$. Moreover the conditions: (1) ${\chi _\Pi } = 0$, (2) ${\chi _c} > 0,{H^\ast }(X;{\mathbf {Q}})$ evenly graded, are equivalent. In this case ${H^\ast }(X;{\mathbf {Q}})$ is a polynomial algebra truncated by a Borel ideal. Finally, if X is a finite 1-connected C.W. complex, and an r-torus acts continuously on X with only finite isotropy, then ${\chi _\Pi } \leqslant - r$.References
- Christopher Allday, On the rank of a space, Trans. Amer. Math. Soc. 166 (1972), 173–185. MR 292071, DOI 10.1090/S0002-9947-1972-0292071-8
- Henri Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, pp. 57–71 (French). MR 0042427 W. H. Greub, S. Halperin and J. R. Vanstone, Connections, curvature and cohomology, vol. III, Academic Press, New York, 1975.
- J. L. Koszul, Sur un type d’algèbres différentielles en rapport avec la transgression, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, pp. 73–81 (French). MR 0042428
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 173-199
- MSC: Primary 55H05; Secondary 55D15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0461508-8
- MathSciNet review: 0461508