Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Finiteness in the minimal models of Sullivan
HTML articles powered by AMS MathViewer

by Stephen Halperin
Trans. Amer. Math. Soc. 230 (1977), 173-199
DOI: https://doi.org/10.1090/S0002-9947-1977-0461508-8

Abstract:

Let X be a 1-connected topological space such that the vector spaces ${\Pi _ \ast }(X) \otimes {\mathbf {Q}}$ and ${H^\ast }(X;{\mathbf {Q}})$ are finite dimensional. Then ${H^\ast }(X;{\mathbf {Q}})$ satisfies Poincaré duality. Set ${\chi _\Pi } = \sum {( - 1)^p}\dim {\Pi _p}(X) \otimes {\mathbf {Q}}$ and ${\chi _c} =$ $\sum {( - 1)^p}\dim {H^p}(X;{\mathbf {Q}})$. Then ${\chi _\Pi } \leqslant 0$ and ${\chi _c} \geqslant 0$. Moreover the conditions: (1) ${\chi _\Pi } = 0$, (2) ${\chi _c} > 0,{H^\ast }(X;{\mathbf {Q}})$ evenly graded, are equivalent. In this case ${H^\ast }(X;{\mathbf {Q}})$ is a polynomial algebra truncated by a Borel ideal. Finally, if X is a finite 1-connected C.W. complex, and an r-torus acts continuously on X with only finite isotropy, then ${\chi _\Pi } \leqslant - r$.
References
  • Christopher Allday, On the rank of a space, Trans. Amer. Math. Soc. 166 (1972), 173–185. MR 292071, DOI 10.1090/S0002-9947-1972-0292071-8
  • Henri Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, pp. 57–71 (French). MR 0042427
  • W. H. Greub, S. Halperin and J. R. Vanstone, Connections, curvature and cohomology, vol. III, Academic Press, New York, 1975.
  • J. L. Koszul, Sur un type d’algèbres différentielles en rapport avec la transgression, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, pp. 73–81 (French). MR 0042428
  • Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
  • Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
  • Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 55H05, 55D15
  • Retrieve articles in all journals with MSC: 55H05, 55D15
Bibliographic Information
  • © Copyright 1977 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 230 (1977), 173-199
  • MSC: Primary 55H05; Secondary 55D15
  • DOI: https://doi.org/10.1090/S0002-9947-1977-0461508-8
  • MathSciNet review: 0461508