## On analytically invariant subspaces and spectra

HTML articles powered by AMS MathViewer

- by Domingo A. Herrero PDF
- Trans. Amer. Math. Soc.
**233**(1977), 37-44 Request permission

## Abstract:

Let*T*be a bounded linear operator from a complex Banach space $\mathfrak {X}$ into itself. Let ${\mathcal {A}_T}$ and $\mathcal {A}_T^a$ denote the weak closure of the polynomials and the rational functions (with poles outside the spectrum $\sigma (T)$ of

*T*) in

*T*, respectively. The lattice ${\operatorname {Lat}}\;\mathcal {A}_T^a$ of (closed) invariant subspaces of $\mathcal {A}_T^a$ is a very particular subset of the invariant subspace lattice ${\operatorname {Lat}}\;{\mathcal {A}_T} = {\operatorname {Lat}}\;T$ of

*T*. It is shown that: (1) If the resolvent set of

*T*has finitely many components, then ${\operatorname {Lat}}\;\mathcal {A}_T^a$ is a clopen (i.e., closed and open) sublattice of ${\operatorname {Lat}}\;T$, with respect to the “gap topology” between subspaces. (2) If ${\mathfrak {M}_1},{\mathfrak {M}_2} \in {\operatorname {Lat}}\;T,{\mathfrak {M}_1} \cap {\mathfrak {M}_2} \in {\operatorname {Lat}}\;\mathcal {A}_T^a$ and ${\mathfrak {M}_1} + {\mathfrak {M}_2}$ is closed in $\mathfrak {X}$ and belongs to ${\operatorname {Lat}}\;\mathcal {A}_T^a$, then ${\mathfrak {M}_1}$ and ${\mathfrak {M}_2}$ also belong to ${\operatorname {Lat}}\;\mathcal {A}_T^a$. (3) If $\mathfrak {M} \in {\operatorname {Lat}}\;T,R$ is the restriction of

*T*to $\mathfrak {M}$ and $\bar T$ is the operator induced by

*T*on the quotient space $\mathfrak {X}/\mathfrak {M}$, then $\sigma (T) \subset \sigma (R) \cup \sigma (\bar T)$. Moreover, $\sigma (T) = \sigma (R) \cup \sigma (\bar T)$ if and only if $\mathfrak {M} \in {\operatorname {Lat}}\;\mathcal {A}_T^a$. The results also include an analysis of the semi-Fredholm index of

*R*and $\bar T$ at a point $\lambda \in \sigma (R) \cup \sigma (\bar T)\backslash \sigma (T)$ and extensions of the results to algebras between ${\mathcal {A}_T}$ and $\mathcal {A}_T^a$.

## References

- R. G. Douglas and Carl Pearcy,
*On a topology for invariant subspaces*, J. Functional Analysis**2**(1968), 323–341. MR**0233224**, DOI 10.1016/0022-1236(68)90010-4 - Paul R. Halmos,
*A Hilbert space problem book*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0208368** - Henry Helson,
*Lectures on invariant subspaces*, Academic Press, New York-London, 1964. MR**0171178**
D. A. Herrero and A. L. Lambert, - Domingo Antonio Herrero and Norberto Salinas,
*Analytically invariant and bi-invariant subspaces*, Trans. Amer. Math. Soc.**173**(1972), 117–136. MR**312294**, DOI 10.1090/S0002-9947-1972-0312294-9 - Tosio Kato,
*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473** - A. L. Lambert and T. R. Turner,
*The double commutant of invertibly weighted shifts*, Duke Math. J.**39**(1972), 385–389. MR**310683**, DOI 10.1215/S0012-7094-72-03946-4 - Heydar Radjavi and Peter Rosenthal,
*On invariant subspaces and reflexive algebras*, Amer. J. Math.**91**(1969), 683–692. MR**251569**, DOI 10.2307/2373347

*On strictly cyclic algebras*, $\mathcal {P}$-

*algebras and reflexive operators*, Trans. Amer. Math. Soc.

**185**(1975), 229-235.

## Additional Information

- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**233**(1977), 37-44 - MSC: Primary 47A15; Secondary 47A10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0482289-8
- MathSciNet review: 0482289