Simple Lie algebras of toral rank one
HTML articles powered by AMS MathViewer
- by Robert Lee Wilson
- Trans. Amer. Math. Soc. 236 (1978), 287-295
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463252-0
- PDF | Request permission
Abstract:
Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic $p > 7$. Let L have Cartan decomposition $L = H + {\sum _{\gamma \in \Gamma }}{L_\gamma }$. If $\Gamma$ generates a cyclic group then L is isomorphic to ${\text {sl}}(2,F)$ or to one of the simple Lie algebras of generalized Cartan type $W(1:{\mathbf {n}})$ or $H{(2:{\mathbf {n}}:\Phi )^{(2)}}$.References
- Richard E. Block, On Lie algebras of rank one, Trans. Amer. Math. Soc. 112 (1964), 19–31. MR 160803, DOI 10.1090/S0002-9947-1964-0160803-0
- Gordon Brown, Cartan subalgebras of Zassenhaus algebras, Canadian J. Math. 27 (1975), no. 5, 1011–1021. MR 401851, DOI 10.4153/CJM-1975-105-4
- Ho-Jui Chang, Über Wittsche Lie-Ringe, Abh. Math. Sem. Hansischen Univ. 14 (1941), 151–184 (German). MR 5100, DOI 10.1007/BF02940743
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- N. Jacobson, A note on three dimensional simple Lie algebras, J. Math. Mech. 7 (1958), 823–831. MR 0097432, DOI 10.1512/iumj.1958.7.57047
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793 V. G. Kac, Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 800-838 = Math. USSR Izv. 8 (1974), 801-835, ibid. 40 (1976), 1415. MR 51 #5685.
- Irving Kaplansky, Lie algebras of characteristic $p$, Trans. Amer. Math. Soc. 89 (1958), 149–183. MR 99359, DOI 10.1090/S0002-9947-1958-0099359-7
- A. I. Kostrikin and I. R. Šafarevič, Graded Lie algebras of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 251–322 (Russian). MR 0252460
- John R. Schue, Cartan decompositions for Lie algebras of prime characteristic, J. Algebra 11 (1969), 25–52. MR 231873, DOI 10.1016/0021-8693(69)90099-4
- Robert Lee Wilson, A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic, J. Algebra 40 (1976), no. 2, 418–465. MR 412239, DOI 10.1016/0021-8693(76)90206-4
- Robert Lee Wilson, The roots of a simple Lie algebra are linear, Bull. Amer. Math. Soc. 82 (1976), no. 4, 607–608. MR 409579, DOI 10.1090/S0002-9904-1976-14129-8
- Robert Lee Wilson, Cartan subalgebras of simple Lie algebras, Trans. Amer. Math. Soc. 234 (1977), no. 2, 435–446. MR 480650, DOI 10.1090/S0002-9947-1977-0480650-9
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 236 (1978), 287-295
- MSC: Primary 17B20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463252-0
- MathSciNet review: 0463252