## Simple Lie algebras of toral rank one

HTML articles powered by AMS MathViewer

- by Robert Lee Wilson
- Trans. Amer. Math. Soc.
**236**(1978), 287-295 - DOI: https://doi.org/10.1090/S0002-9947-1978-0463252-0
- PDF | Request permission

## Abstract:

Let*L*be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic $p > 7$. Let

*L*have Cartan decomposition $L = H + {\sum _{\gamma \in \Gamma }}{L_\gamma }$. If $\Gamma$ generates a cyclic group then

*L*is isomorphic to ${\text {sl}}(2,F)$ or to one of the simple Lie algebras of generalized Cartan type $W(1:{\mathbf {n}})$ or $H{(2:{\mathbf {n}}:\Phi )^{(2)}}$.

## References

- Richard E. Block,
*On Lie algebras of rank one*, Trans. Amer. Math. Soc.**112**(1964), 19–31. MR**160803**, DOI 10.1090/S0002-9947-1964-0160803-0 - Gordon Brown,
*Cartan subalgebras of Zassenhaus algebras*, Canadian J. Math.**27**(1975), no. 5, 1011–1021. MR**401851**, DOI 10.4153/CJM-1975-105-4 - Ho-Jui Chang,
*Über Wittsche Lie-Ringe*, Abh. Math. Sem. Hansischen Univ.**14**(1941), 151–184 (German). MR**5100**, DOI 10.1007/BF02940743 - James E. Humphreys,
*Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR**0323842**, DOI 10.1007/978-1-4612-6398-2 - N. Jacobson,
*A note on three dimensional simple Lie algebras*, J. Math. Mech.**7**(1958), 823–831. MR**0097432**, DOI 10.1512/iumj.1958.7.57047 - Nathan Jacobson,
*Lie algebras*, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0143793**
V. G. Kac, - Irving Kaplansky,
*Lie algebras of characteristic $p$*, Trans. Amer. Math. Soc.**89**(1958), 149–183. MR**99359**, DOI 10.1090/S0002-9947-1958-0099359-7 - A. I. Kostrikin and I. R. Šafarevič,
*Graded Lie algebras of finite characteristic*, Izv. Akad. Nauk SSSR Ser. Mat.**33**(1969), 251–322 (Russian). MR**0252460** - John R. Schue,
*Cartan decompositions for Lie algebras of prime characteristic*, J. Algebra**11**(1969), 25–52. MR**231873**, DOI 10.1016/0021-8693(69)90099-4 - Robert Lee Wilson,
*A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic*, J. Algebra**40**(1976), no. 2, 418–465. MR**412239**, DOI 10.1016/0021-8693(76)90206-4 - Robert Lee Wilson,
*The roots of a simple Lie algebra are linear*, Bull. Amer. Math. Soc.**82**(1976), no. 4, 607–608. MR**409579**, DOI 10.1090/S0002-9904-1976-14129-8 - Robert Lee Wilson,
*Cartan subalgebras of simple Lie algebras*, Trans. Amer. Math. Soc.**234**(1977), no. 2, 435–446. MR**480650**, DOI 10.1090/S0002-9947-1977-0480650-9

*Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated*, Izv. Akad. Nauk SSSR Ser. Mat.

**38**(1974), 800-838 = Math. USSR Izv.

**8**(1974), 801-835, ibid.

**40**(1976), 1415. MR

**51**#5685.

## Bibliographic Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**236**(1978), 287-295 - MSC: Primary 17B20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463252-0
- MathSciNet review: 0463252