Distribution of eigenvalues of a two-parameter system of differential equations
Author:
M. Faierman
Journal:
Trans. Amer. Math. Soc. 247 (1979), 45-86
MSC:
Primary 34B25; Secondary 34E05
DOI:
https://doi.org/10.1090/S0002-9947-1979-0517686-7
MathSciNet review:
517686
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper two simultaneous Sturm-Liouville systems are considered, the first defined for the interval $0 \leqslant {x_1} \leqslant 1$, the second for the interval $0 \leqslant {x_{2 }} \leqslant 1$, and each containing the parameters $\lambda$ and $\mu$. Denoting the eigenvalues and eigenfunctions of the simultaneous systems by $({\lambda _{j,k}},{\mu _{j,k}})$ and ${\psi _{j,k}}({x_{1,}}{x_2})$, respectively, $j, k = 0, 1, \ldots$, asymptotic methods are employed to derive asymptotic formulae for these expressions, as $j + k \to \infty$ when $(j, k)$ is restricted to lie in a certain sector of the $(x, y)$ -plane. These results constitute a further stage in the development of the theory related to the behaviour of the eigenvalues and eigenfunctions of multiparameter Sturm-Liouville systems and answer an open question concerning the uniform boundedness of the ${\psi _{j,k}} ({x_1}, {x_2})$.
- F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York-London, 1972. Volume I: Matrices and compact operators; Mathematics in Science and Engineering, Vol. 82. MR 0451001
- F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 1–27. MR 220078, DOI https://doi.org/10.1090/S0002-9904-1968-11866-X
- Patrick J. Browne, A multi-parameter eigenvalue problem, J. Math. Anal. Appl. 38 (1972), 553–568. MR 305118, DOI https://doi.org/10.1016/0022-247X%2872%2990068-6
- A. A. Dorodnicyn, Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, Amer. Math. Soc. Transl. (2) 16 (1960), 1–101. MR 0117381, DOI https://doi.org/10.1090/trans2/016/01
- M. Faierman, The completeness and expansion theorems associated with the multi-parameter eigenvalue problem in ordinary differential equations, J. Differential Equations 5 (1969), 197–213. MR 232991, DOI https://doi.org/10.1016/0022-0396%2869%2990112-0
- M. Faierman, On the distribution of the eigenvalues of a two-parameter system of ordinary differential equations of the second order, SIAM J. Math. Anal. 8 (1977), no. 5, 854–870. MR 447694, DOI https://doi.org/10.1137/0508065 ---, An eigenfunction expansion associated with a two-parameter system of ordinary differential equations of the second order, preprint 125, Ben Gurion University of the Negev, Beer Sheva, 1975. ---, Bounds for the eigenfunctions of a two-parameter system of ordinary differential equations of the second order (submitted).
- B. D. Sleeman, Completeness and expansion theorems for a two-parameter eigenvalue problem in ordinary differential equations using variational principles, J. London Math. Soc. (2) 6 (1973), 705–712. MR 328196, DOI https://doi.org/10.1112/jlms/s2-6.4.705
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Retrieve articles in Transactions of the American Mathematical Society with MSC: 34B25, 34E05
Retrieve articles in all journals with MSC: 34B25, 34E05
Additional Information
Keywords:
Two-parameter systems,
simultaneous Sturm-Liouville systems,
eigenvalues,
eigenfunctions,
asymptotic formulae,
transition point,
Bessel functions
Article copyright:
© Copyright 1979
American Mathematical Society