On the contact between complex manifolds and real hypersurfaces in
Author:
Thomas Bloom
Journal:
Trans. Amer. Math. Soc. 263 (1981), 515-529
MSC:
Primary 32F30; Secondary 53B35
DOI:
https://doi.org/10.1090/S0002-9947-1981-0594423-0
MathSciNet review:
594423
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a real
hypersurface of an open subset of
and let
. Let
denote the maximal order of contact of a one-dimensional complex submanifold of a neighborhood of
in
with
at
. Let
denote the
for all tangential holomorphic vector fields
with
then
where
are positive integers such that
and
denotes the Levi form of
evaluated on the vector field
.
Theorem. If is pseudoconvex near
then
.
- [1] Thomas Bloom and Ian Graham, A geometric characterization of points of type 𝑚 on real submanifolds of 𝐶ⁿ, J. Differential Geometry 12 (1977), no. 2, 171–182. MR 492369
- [2] Thomas Bloom and Ian Graham, On “type” conditions for generic real submanifolds of 𝐶ⁿ, Invent. Math. 40 (1977), no. 3, 217–243. MR 589930, https://doi.org/10.1007/BF01425740
- [3] Thomas Bloom, Remarks on type conditions for real hypersurfaces in 𝐶ⁿ, Several complex variables (Cortona, 1976/1977) Scuola Norm. Sup. Pisa, Pisa, 1978, pp. 14–24. MR 681297
- [4] Thomas Bloom, Sur le contact entre sous-variétés réelles et sous-variétés complexes de 𝐶ⁿ, Séminaire Pierre Lelong (Analyse) (année 1975/76), Springer, Berlin, 1977, pp. 28–43. Lecture Notes in Math., Vol. 578 (French). MR 0589904
- [5]
D. Catlin, Necessary conditions for subellipticity and hypoellipticity for the
-Neumann problem on pseudoconvex domains (Proc. Conf. Several Complex Variables, Princeton, N. J., 1979) (to appear).
- [6] J. D'Angelo, Finite type conditions for real hypersurfaces, J. Differential Geometry (to appear).
- [7] Makhlouf Derridj, Estimations pour ∂ dans des domaines non pseudo-convexes, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 239–254, xi (French, with English summary). MR 513888
- [8] Klas Diederich and John E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978), no. 2, 371–384. MR 0477153, https://doi.org/10.2307/1971120
- [9] Michael Freeman, Integration of analytic differential systems with singularities and some applications to real submanifolds of 𝐶ⁿ, J. Math. Soc. Japan 30 (1978), no. 3, 571–578. MR 590087, https://doi.org/10.2969/jmsj/03030571
- [10] Roe W. Goodman, Nilpotent Lie groups: structure and applications to analysis, Lecture Notes in Mathematics, Vol. 562, Springer-Verlag, Berlin-New York, 1976. MR 0442149
- [11] Peter Greiner, Subelliptic estimates for the 𝛿-Neumann problem in 𝐶², J. Differential Geometry 9 (1974), 239–250. MR 344702
- [12] J. J. Kohn, Boundary behavior of 𝛿 on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523–542. MR 322365
- [13] J. J. Kohn, Subellipticity of the ∂-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, https://doi.org/10.1007/BF02395058
- [14]
-, Subellipticity of the
-Neumann problem on weakly pseudo-convex domains, Rencontres sur l'Analyse Complexe à Plusieurs Variables et les Systèmes Indéterminés, Université de Montréal Press, Montréal, 1975, pp. 105-118.
- [15] J. J. Kohn, Sufficient conditions for subellipticity on weakly pseudo-convex domains, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 6, 2214–2216. MR 466635, https://doi.org/10.1073/pnas.74.6.2214
- [16] Steven G. Krantz, Characterizations of various domains of holomorphy via ∂ estimates and applications to a problem of Kohn, Illinois J. Math. 23 (1979), no. 2, 267–285. MR 528563
- [17] Hugo E. Rossi, Differentiable manifolds in complex euclidean space, Proc. Internat. Congr. Math. (Moscow, 1966) Izdat. “Mir”, Moscow, 1968, pp. 512–516. MR 0234499
- [18] Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, https://doi.org/10.1007/BF02392419
Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F30, 53B35
Retrieve articles in all journals with MSC: 32F30, 53B35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1981-0594423-0
Keywords:
-Neumann problem,
pseudoconvex hypersurface,
tangential holomorphic vector field,
type of a point
Article copyright:
© Copyright 1981
American Mathematical Society