Uniform partitions of an interval
HTML articles powered by AMS MathViewer
- by Vladimir Drobot
- Trans. Amer. Math. Soc. 268 (1981), 151-160
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628451-3
- PDF | Request permission
Abstract:
Let $\{ {x_n}\}$ be a sequence of numbers in $[0, 1]$; for each $n$ let ${u_0}(n), \ldots , {u_n}(n)$ be the lengths of the intervals resulting from partitioning of $[0, 1]$ by $\{ {x_1}, {x_2}, \ldots , {x_n}\}$. For $p > 1$ put ${A^{(p)}}(n) = {(n + 1)^{p - 1}}\sum \nolimits _0^n {{{[{u_j}(n)]}^p}}$; the paper investigates the behavior of ${A^{(p)}}(n)$ as $n \to \infty$ for various sequences $\{ {x_n}\}$. Theorem 1. If ${x_n} = n\theta (\bmod 1)$ for an irrational $\theta > 0$, then $\lim \inf {A^{(p)}}(n) < \infty$. However $\lim \sup {A^{(p)}} < \infty$ if and only if the partial quotients of $\theta$ are bounded (in the continued fraction expansion of $\theta$). Theorem 2 gives the exact values for $\lim \inf$ and $\lim \sup$ when $\theta = \tfrac {1} {2}(1 + \sqrt 5 )$. Theorem 3. If ${x_n}{\text {’}}s$ are random variables, uniformly distributed on $[0, 1]$, then $\lim {A^{(p)}}(n) = \Gamma (p + 1)$ almost surely.References
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- V. Drobot, Approximation of curves by polygons, J. Number Theory 17 (1983), no. 3, 366–374. MR 724535, DOI 10.1016/0022-314X(83)90054-9 I. S. Gradshtein and I. M. Ryzhik, Tables of integrals, sums and products, Moscow, 1971. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford, 1960.
- Samuel Karlin, A first course in stochastic processes, Academic Press, New York-London, 1966. MR 0208657
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Noel B. Slater, Gaps and steps for the sequence $n\theta \ \textrm {mod}\ 1$, Proc. Cambridge Philos. Soc. 63 (1967), 1115–1123. MR 217019, DOI 10.1017/s0305004100042195
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 268 (1981), 151-160
- MSC: Primary 10K30; Secondary 10K05
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628451-3
- MathSciNet review: 628451