Smoothness of the boundary values of functions bounded and holomorphic in the disk
HTML articles powered by AMS MathViewer
- by Shinji Yamashita
- Trans. Amer. Math. Soc. 272 (1982), 539-544
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662051-5
- PDF | Request permission
Abstract:
The non-Euclidean counterparts of Hardy-Littlewood’s theorems on Lipschitz and mean Lipschitz functions are considered. Let $1\le p < \infty$ and $0 < \alpha \le 1$. For $f$ holomorphic and bounded, $|f|< 1$, in $|z|< 1$, the condition that is necessary and sufficient for $f$ to be continuous on $|z|\le 1$ with the boundary function $f({e^{it}}) \in \sigma {\Lambda _\alpha }$, the hyperbolic Lipschitz class. Furthermore, the condition that the $p$th mean of $f^{\ast }$ on the circle $|z|=r < 1$ is $O({(1 - r)^{\alpha - 1}})$ is necessary and sufficient for $f$ to be of the hyperbolic Hardy class $H_\sigma ^{p}$ and for the radial limits to be of the hyperbolic mean Lipschitz class $\sigma \Lambda _\alpha ^{p}$.References
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- G. H. Hardy and J. E. Littlewood, A convergence criterion for Fourier series, Math. Z. 28 (1928), no. 1, 612–634. MR 1544980, DOI 10.1007/BF01181186
- J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, 1944. MR 0012121
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 539-544
- MSC: Primary 30D50
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662051-5
- MathSciNet review: 662051