Strong Fatou-$1$-points of Blaschke products
HTML articles powered by AMS MathViewer
- by C. L. Belna, F. W. Carroll and G. Piranian
- Trans. Amer. Math. Soc. 280 (1983), 695-702
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716845-9
- PDF | Request permission
Abstract:
This paper shows that to every countable set $M$ on the unit circle there corresponds a Blaschke product whose set of strong Fatou-$1$-points contains $M$. It also shows that some Blaschke products have an uncountable set of strong Fatou-$1$-points.References
- C. L. Belna, F. W. Carroll, and G. Piranian, The Fatou points of strongly annular functions, Indiana Univ. Math. J. 32 (1983), no. 1, 19–24. MR 684752, DOI 10.1512/iumj.1983.32.32002 H. Blumberg, A theorem on arbitrary functions of two variables with applications, Fund. Math. 16 (1930), 17-24.
- G. T. Cargo, Blaschke products and singular functions with prescribed boundary values, J. Math. Anal. Appl. 71 (1979), no. 1, 287–296. MR 545875, DOI 10.1016/0022-247X(79)90231-2
- Otto Frostman, Sur les produits de Blaschke, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund] 12 (1942), no. 15, 169–182 (French). MR 12127
- Maurice Heins, On the finite angular derivatives of an analytic function mapping the open unit disk into itself, J. London Math. Soc. (2) 15 (1977), no. 2, 239–254. MR 442232, DOI 10.1112/jlms/s2-15.2.239 R. L. Moore, Concerning the triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88.
- Wladimir Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. 36 (1934), no. 1, 201–226. MR 1501738, DOI 10.1090/S0002-9947-1934-1501738-9
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 695-702
- MSC: Primary 30D40; Secondary 30D50
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716845-9
- MathSciNet review: 716845