Completely unstable dynamical systems
HTML articles powered by AMS MathViewer
- by Sudhir K. Goel and Dean A. Neumann
- Trans. Amer. Math. Soc. 291 (1985), 639-668
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800256-3
- PDF | Request permission
Abstract:
We associate with the ${C^r} (r \ge 1)$ dynamical system $\phi$ on an $m$-manifold $M$, the orbit space $M/\phi$, defined to be the set of orbits of $\phi$ with the quotient topology. If $\phi$ is completely unstable, $M/\phi$ turns out to be a ${C^r} (m - 1)$-nonseparated manifold. It is known that for a completely unstable flow $\phi$ on a contractible manifold $M, M/\phi$ is Hausdorff if and only if $\phi$ is parallelizable. In general, we place an order on the non-Hausdorff points of $M/\phi$ (essentially) by setting $\bar p < \bar q$ if and only if ${\pi ^{ - 1}}(\bar q) \subseteq {J^ + }({\pi ^{ - 1}}(\bar p))$. Our result is that $(M, \phi )$ is topologically equivalent to $(M’, \phi ’)$ if and only if $M/\phi$ is order isomorphic to $M’/\phi ’$.References
- J. Dugundji and H. A. Antosiewicz, Parallelizable flows and Lyapunov’s second method, Ann. of Math. (2) 73 (1961), 543–555. MR 123064, DOI 10.2307/1970316
- R. H. Bing, The cartesian product of a certain nonmanifold and a line is $E^{4}$, Ann. of Math. (2) 70 (1959), 399–412. MR 107228, DOI 10.2307/1970322
- N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, New York-Berlin, 1970. MR 0289890
- W. C. Chewning, A dynamical system on $E^{4}$ neither isomorphic nor equivalent to a differential system, Bull. Amer. Math. Soc. 80 (1974), 150–153. MR 326781, DOI 10.1090/S0002-9904-1974-13396-3
- William C. Chewning Jr. and R. Steven Owen, Local sections of flows on manifolds, Proc. Amer. Math. Soc. 49 (1975), 71–77. MR 362404, DOI 10.1090/S0002-9939-1975-0362404-0
- James Dugundji, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original. MR 0478089 Sudhir K. Goel, Complete unstable flows on manifolds, Ph.D. dissertation.
- André Haefliger and Georges Reeb, Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseign. Math. (2) 3 (1957), 107–125 (French). MR 89412
- Lawrence Markus, Parallel dynamical systems, Topology 8 (1969), 47–57. MR 234489, DOI 10.1016/0040-9383(69)90030-5
- Dean A. Neumann, Completely unstable flows on $2$-manifolds, Trans. Amer. Math. Soc. 225 (1977), 211–226. MR 448440, DOI 10.1090/S0002-9947-1977-0448440-0
- Dean Neumann, Smoothing continuous flows, J. Differential Equations 24 (1977), no. 1, 127–135. MR 431280, DOI 10.1016/0022-0396(77)90173-5
- Dean A. Neumann, Topologically hyperbolic equilibria in dynamical systems, J. Differential Equations 37 (1980), no. 1, 49–59. MR 583338, DOI 10.1016/0022-0396(80)90087-X Z. Nitecki, Explosions in completely unstable dynamical systems, Proc. Univ. of Florida, Internat. Sympos. A. R. Cesari, ed., Academic Press, New York, 1977, pp. 473-475.
- Zbigniew Nitecki, Explosions in completely unstable flows. I. Preventing explosions, Trans. Amer. Math. Soc. 245 (1978), 43–61. MR 511399, DOI 10.1090/S0002-9947-1978-0511399-2
- Zbigniew Nitecki, Explosions in completely unstable flows. II. Some examples, Trans. Amer. Math. Soc. 245 (1978), 63–88. MR 511400, DOI 10.1090/S0002-9947-1978-0511400-6
- Zbigniew Nitecki, Bifurcation from completely unstable flows on the cylinder, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 86–107. MR 556825
- Dennis Pixton, More counterexamples to Coleman’s conjecture, Proc. Amer. Math. Soc. 82 (1981), no. 1, 145–148. MR 603618, DOI 10.1090/S0002-9939-1981-0603618-4
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Floris Takens and Warren White, Vector fields with no nonwandering points, Amer. J. Math. 98 (1976), no. 2, 415–425. MR 418163, DOI 10.2307/2373895 T. Wazewski, Sur un problème de caractère intégral relatif à l’équation $\partial z/\partial x + Q(x,\,y)\partial z/\partial y = 0$, Mathematica 8 (1934), 103-116.
- Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no. 2, 244–270. MR 1503106, DOI 10.2307/1968202
- Hassler Whitney, Cross-sections of curves in $3$-space, Duke Math. J. 4 (1938), no. 1, 222–226. MR 1546045, DOI 10.1215/S0012-7094-38-00416-8
- F. Wesley Wilson Jr., A uniform continuity condition which is equivalent to Coleman’s conjecture, J. Differential Equations 36 (1980), no. 1, 12–19. MR 571123, DOI 10.1016/0022-0396(80)90071-6
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 291 (1985), 639-668
- MSC: Primary 58F18
- DOI: https://doi.org/10.1090/S0002-9947-1985-0800256-3
- MathSciNet review: 800256