A Dowker product
HTML articles powered by AMS MathViewer
- by Amer Bešlagić
- Trans. Amer. Math. Soc. 292 (1985), 519-530
- DOI: https://doi.org/10.1090/S0002-9947-1985-0808735-X
- PDF | Request permission
Abstract:
$\diamondsuit$ implies that there is a (normal) countably paracompact space $X$ such that ${X^2}$ is normal and not countably paracompact.References
- Amer Bešlagić, Normality in products, Topology Appl. 22 (1986), no. 1, 71–82. MR 831182, DOI 10.1016/0166-8641(86)90078-7 A. Bešlagić and M. E. Rudin, Set theoretic constructions of nonshrinking open covers, Topology Appl. (to appear). E. K. van Douwen, A technique for constructing honest, locally compact submetrizable examples (to appear).
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976), no. 5, 998–1005. MR 428245, DOI 10.4153/CJM-1976-098-8 K. Kunen, Products of $S$-spaces, preprint.
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/62), 223–236. MR 132525, DOI 10.4064/fm-50-3-223-236
- Kiiti Morita, On the product of paracompact spaces, Proc. Japan Acad. 39 (1963), 559–563. MR 159302
- A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), no. 3, 505–516. MR 438292, DOI 10.1112/jlms/s2-14.3.505
- T. Przymusiński, A Lindelöf space $X$ such that $X^{2}$ is normal but not paracompact, Fund. Math. 78 (1973), no. 3, 291–296. MR 321007, DOI 10.4064/fm-78-3-291-296
- Teodor C. Przymusiński, On the notion of $n$-cardinality, Proc. Amer. Math. Soc. 69 (1978), no. 2, 333–338. MR 491191, DOI 10.1090/S0002-9939-1978-0491191-3
- Teodor C. Przymusiński, Normality and paracompactness in finite and countable Cartesian products, Fund. Math. 105 (1979/80), no. 2, 87–104. MR 561584, DOI 10.4064/fm-105-2-87-104
- Teodor C. Przymusiński, Products of normal spaces, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 781–826. MR 776637
- Mary Ellen Rudin, A normal space $X$ for which $X\times I$ is not normal, Fund. Math. 73 (1971/72), no. 2, 179–186. MR 293583, DOI 10.4064/fm-73-2-179-186
- Mary Ellen Rudin, Lectures on set theoretic topology, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 23, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Wyoming, Laramie, Wyo., August 12–16, 1974. MR 0367886, DOI 10.1090/cbms/023
- Mary Ellen Rudin, $\aleph$-Dowker spaces, Czechoslovak Math. J. 28(103) (1978), no. 2, 324–326. MR 478098, DOI 10.21136/CMJ.1978.101534
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- I. M. James and E. H. Kronheimer (eds.), Aspects of topology, London Mathematical Society Lecture Note Series, vol. 93, Cambridge University Press, Cambridge, 1985. In memory of Hugh Dowker: 1912–1982. MR 787821, DOI 10.1017/CBO9781107359925
- Mary Ellen Rudin and Michael Starbird, Products with a metric factor, General Topology and Appl. 5 (1975), no. 3, 235–248. MR 380709, DOI 10.1016/0016-660X(75)90023-9
- Michael L. Wage, The dimension of product spaces, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, 4671–4672. MR 507930, DOI 10.1073/pnas.75.10.4671
- Michael L. Wage, Almost disjoint sets and Martin’s axiom, J. Symbolic Logic 44 (1979), no. 3, 313–318. MR 540662, DOI 10.2307/2273124
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 292 (1985), 519-530
- MSC: Primary 03E05; Secondary 03E45, 54A35, 54D18
- DOI: https://doi.org/10.1090/S0002-9947-1985-0808735-X
- MathSciNet review: 808735