$G$-deformations and some generalizations of H. Weyl’s tube theorem
HTML articles powered by AMS MathViewer
- by Oldřich Kowalski and Lieven Vanhecke
- Trans. Amer. Math. Soc. 294 (1986), 799-811
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825738-0
- PDF | Request permission
Abstract:
We prove an invariance theorem for the volumes of tubes about submanifolds in arbitrary analytic Riemannian manifolds under $G$-deformations of the second order. For locally symmetric spaces or two-point homogeneous spaces we give stronger invariance theorems using only $G$-deformations of the first order. All these results can be viewed as generalizations of the result of H. Weyl about isometric deformations and the volumes of tubes in spaces of constant curvature. They are derived from a new formula for the volume of a tube about a submanifold.References
- Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885, DOI 10.1007/978-3-642-61876-5
- Robert B. Brown and Alfred Gray, Riemannian manifolds with holonomy group $\textrm {S}pin$ (9), Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 41–59. MR 0328817
- B.-Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28–67. MR 618545, DOI 10.1515/crll.1981.325.28
- A. Gray and L. Vanhecke, The volumes of tubes in a Riemannian manifold, Rend. Sem. Mat. Univ. Politec. Torino 39 (1981), no. 3, 1–50 (1983). MR 706043
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Gary R. Jensen, Deformation of submanifolds of homogeneous spaces, J. Differential Geometry 16 (1981), no. 2, 213–246. MR 638789
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- O. Kowalski and L. Vanhecke, $G$-deformations of curves and volumes of tubes in Riemannian manifolds, Geom. Dedicata 15 (1983), no. 2, 125–135. MR 737953, DOI 10.1007/BF00147759
- F. Tricerri and L. Vanhecke, Geodesic spheres and naturally reductive homogeneous spaces, Riv. Mat. Univ. Parma (4) 10 (1984), no. special vol. 10*, 123–131. MR 777319
- Lieven Vanhecke, A note on harmonic spaces, Bull. London Math. Soc. 13 (1981), no. 6, 545–546. MR 634597, DOI 10.1112/blms/13.6.545
- Lieven Vanhecke, The canonical geodesic involution and harmonic spaces, Ann. Global Anal. Geom. 1 (1983), no. 1, 131–136. MR 739895, DOI 10.1007/BF02329741
- L. Vanhecke and T. J. Willmore, Interaction of tubes and spheres, Math. Ann. 263 (1983), no. 1, 31–42. MR 697328, DOI 10.1007/BF01457081
- Hermann Weyl, On the Volume of Tubes, Amer. J. Math. 61 (1939), no. 2, 461–472. MR 1507388, DOI 10.2307/2371513
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 294 (1986), 799-811
- MSC: Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9947-1986-0825738-0
- MathSciNet review: 825738