On starshaped rearrangement and applications
HTML articles powered by AMS MathViewer
- by Bernhard Kawohl
- Trans. Amer. Math. Soc. 296 (1986), 377-386
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837818-4
- PDF | Request permission
Abstract:
A radial symmetrization technique is investigated and new properties are proven. The method transforms functions $u$ into new functions ${u^\ast }$ with starshaped level sets and is therefore called starshaped rearrangement. This rearrangement is in general not equimeasurable, a circumstance with some surprising consequences. The method is then applied to certain variational and free boundary problems and yields new results on the geometrical properties of solutions to these problems. In particular, the Lipschitz continuity of free boundaries can now be easily obtained in a new fashion.References
- H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144. MR 618549
- Catherine Bandle and Moshe Marcus, Radial averaging transformations with various metrics, Pacific J. Math. 46 (1973), 337–348. MR 352502
- Catherine Bandle and Moshe Marcus, Radial averaging transformations and generalized capacities, Math. Z. 145 (1975), no. 1, 11–17. MR 393522, DOI 10.1007/BF01214493
- J. I. Díaz and M. A. Herrero, Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 3-4, 249–258. MR 635761, DOI 10.1017/S0308210500020266
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- L. E. Fraenkel and M. S. Berger, A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13–51. MR 422916, DOI 10.1007/BF02392107
- L. S. Frank and W. D. Wendt, On an elliptic operator with discontinuous nonlinearity, J. Differential Equations 54 (1984), no. 1, 1–18. MR 756543, DOI 10.1016/0022-0396(84)90140-2
- Avner Friedman, Variational principles and free-boundary problems, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1982. MR 679313
- Avner Friedman and Daniel Phillips, The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc. 282 (1984), no. 1, 153–182. MR 728708, DOI 10.1090/S0002-9947-1984-0728708-4 H. Grabmüller, A note on equimeasurable starshaped rearrangement or: "How long is John Miller’s nose?", Report 096, Erlangen, 1983.
- Bernhard Kawohl, Starshapedness of level sets for the obstacle problem and for the capacitory potential problem, Proc. Amer. Math. Soc. 89 (1983), no. 4, 637–640. MR 718988, DOI 10.1090/S0002-9939-1983-0718988-8
- Bernhard Kawohl, A geometric property of level sets of solutions to semilinear elliptic Dirichlet problems, Applicable Anal. 16 (1983), no. 3, 229–233. MR 712734, DOI 10.1080/00036818308839471
- Bernhard Kawohl, Geometrical properties of level sets of solutions to elliptic problems, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 25–36. MR 843592, DOI 10.1090/pspum/045.2/843592 —, Starshaped rearrangement and applications, LCDS Report 83-20, Brown Univ., Providence, R.I., 1983.
- Moshe Marcus, Transformations of domains in the plane and applications in the theory of functions, Pacific J. Math. 14 (1964), 613–626. MR 165093
- Moshe Marcus, Radial averaging of domains, estimates for Dirichlet integrals and applications, J. Analyse Math. 27 (1974), 47–78. MR 477029, DOI 10.1007/BF02788642
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686 J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
- Lawrence E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys. 24 (1973), 721–729 (English, with German summary). MR 333487, DOI 10.1007/BF01597076
- L. E. Payne and Alexander Weinstein, Capacity, virtual mass, and generalized symmetrization, Pacific J. Math. 2 (1952), 633–641. MR 50738
- Daniel Phillips, A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J. 32 (1983), no. 1, 1–17. MR 684751, DOI 10.1512/iumj.1983.32.32001
- J. A. Pfaltzgraff, Radial symmetrization and capacities in space, Duke Math. J. 34 (1967), 747–756. MR 222324
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486
- René P. Sperb, Extension of two theorems of Payne to some nonlinear Dirichlet problems, Z. Angew. Math. Phys. 26 (1975), no. 6, 721–726 (English, with German summary). MR 393835, DOI 10.1007/BF01596076
- Joel Spruck, Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations 8 (1983), no. 15, 1605–1620. MR 729195, DOI 10.1080/03605308308820317
- G. Szegö, On a certain kind of symmetrization and its applications, Ann. Mat. Pura Appl. (4) 40 (1955), 113–119. MR 77664, DOI 10.1007/BF02416526
- David E. Tepper, Free boundary problem, SIAM J. Math. Anal. 5 (1974), 841–846. MR 361132, DOI 10.1137/0505080
- David E. Tepper, On a free boundary problem, the starlike case, SIAM J. Math. Anal. 6 (1975), 503–505. MR 367237, DOI 10.1137/0506045
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 377-386
- MSC: Primary 35R35; Secondary 26D20
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837818-4
- MathSciNet review: 837818