Attracting orbits in Newton’s method
HTML articles powered by AMS MathViewer
- by Mike Hurley
- Trans. Amer. Math. Soc. 297 (1986), 143-158
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849472-6
- PDF | Request permission
Abstract:
It is well known that the dynamical system generated by Newton’s Method applied to a real polynomial with all of its roots real has no periodic attractors other than the fixed points at the roots of the polynomial. This paper studies the effect on Newton’s Method of roots of a polynomial "going complex". More generally, we consider Newton’s Method for smooth real-valued functions of the form ${f_\mu }(x) = g(x) + \mu$, $\mu$ a parameter. If ${\mu _0}$ is a point of discontinuity of the map $\mu \to$ (the number of roots of ${f_\mu }$), then, in the presence of certain nondegeneracy conditions, we show that there are values of $\mu$ near ${\mu _0}$ for which the Newton function of ${f_\mu }$ has nontrivial periodic attractors.References
- Béla Barna, Über das Newtonsche Verfahren zur Annäherung von Wurzeln algebraischer Gleichungen, Publ. Math. Debrecen 2 (1951), 50–63 (German). MR 41902, DOI 10.5486/pmd.1951.2.1.05
- Béla Barna, Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischen Gleichungen. II, Publ. Math. Debrecen 4 (1956), 384–397 (German). MR 78956, DOI 10.5486/pmd.1956.4.3-4.37
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 1980 edition. MR 2541754, DOI 10.1007/978-0-8176-4927-2
- Michel Cosnard and Christophe Masse, Convergence presque partout de la méthode de Newton, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 9, 549–552 (French, with English summary). MR 735497
- James H. Curry, Lucy Garnett, and Dennis Sullivan, On the iteration of a rational function: computer experiments with Newton’s method, Comm. Math. Phys. 91 (1983), no. 2, 267–277. MR 723551, DOI 10.1007/BF01211162
- M. Hurley and C. Martin, Newton’s algorithm and chaotic dynamical systems, SIAM J. Math. Anal. 15 (1984), no. 2, 238–252. MR 731865, DOI 10.1137/0515020 G. Julia, Memoire sur l’iteration des fonctions rationnelles, J. Math. 8 (1918), 47-245.
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446 C. McMullen, Families of rational maps and iterative root-finding algorithms, Harvard thesis, 1985.
- Donald G. Saari and John B. Urenko, Newton’s method, circle maps, and chaotic motion, Amer. Math. Monthly 91 (1984), no. 1, 3–17. MR 729188, DOI 10.2307/2322163
- Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1–36. MR 590817, DOI 10.1090/S0273-0979-1981-14858-8
- Steve Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 87–121. MR 799791, DOI 10.1090/S0273-0979-1985-15391-1
- Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296, DOI 10.1007/BFb0061443
- Sherman Wong, Newton’s method and symbolic dynamics, Proc. Amer. Math. Soc. 91 (1984), no. 2, 245–253. MR 740179, DOI 10.1090/S0002-9939-1984-0740179-6
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 297 (1986), 143-158
- MSC: Primary 58F12; Secondary 26C10
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849472-6
- MathSciNet review: 849472