The zero dispersion limit of the Korteweg-de Vries equation with periodic initial data
Author:
Stephanos Venakides
Journal:
Trans. Amer. Math. Soc. 301 (1987), 189-226
MSC:
Primary 35Q20; Secondary 35B25, 35L67
DOI:
https://doi.org/10.1090/S0002-9947-1987-0879569-7
MathSciNet review:
879569
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the initial value problem for the Korteweg-de Vries equation \[ ({\text {i}})\quad {u_t} - 6u{u_x} + {\varepsilon ^2}{u_{xxx}} = 0\] in the limit of small dispersion, i.e., $\varepsilon \to 0$. When the unperturbed equation \[ ({\text {ii}})\quad {u_t} - 6u{u_x} = 0\] develops a shock, rapid oscillations arise in the solution of the perturbed equation (i) In our study: a. We compute the weak limit of the solution of (i) for periodic initial data as $\varepsilon \to 0$. b. We show that in the neighborhood of a point $(x, t)$ the solution $u(x, t, \varepsilon )$ can be approximated either by a constant or by a periodic or by a quasiperiodic solution of equation (i). In the latter case the associated wavenumbers and frequencies are of order $O(1/\varepsilon )$. c. We compute the number of phases and the wave parameters associated with each phase of the approximating solution as functions of $x$ and $t$. d. We explain the mechanism of the generation of oscillatory phases. Our computations in a and c are subject to the solution of the Lax-Levermore evolution equations (7.7). Our results in b-d rest on a plausible averaging assumption.
- Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill Book Co., New York, 1978. International Series in Pure and Applied Mathematics. MR 538168 E. Date and S. Tanaka, Periodic multisolitons of the Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl., no. 59, 1976.
- B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties, Uspehi Mat. Nauk 31 (1976), no. 1(187), 55–136 (Russian). MR 0427869
- H. Flaschka, M. G. Forest, and D. W. McLaughlin, Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation, Comm. Pure Appl. Math. 33 (1980), no. 6, 739–784. MR 596433, DOI https://doi.org/10.1002/cpa.3160330605
- Joseph B. Keller, Discriminant, transmission, coefficient, and stability bands of Hill’s equation, J. Math. Phys. 25 (1984), no. 10, 2903–2904. MR 760562, DOI https://doi.org/10.1063/1.526036
- Peter D. Lax and C. David Levermore, The small dispersion limit of the Korteweg-de Vries equation. I, Comm. Pure Appl. Math. 36 (1983), no. 3, 253–290. MR 697466, DOI https://doi.org/10.1002/cpa.3160360302
- H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 427731, DOI https://doi.org/10.1002/cpa.3160290203
- H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), no. 3, 217–274. MR 397076, DOI https://doi.org/10.1007/BF01425567
- E. Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), no. 3, 321–337. MR 430403, DOI https://doi.org/10.1002/cpa.3160300305 M. I. Weinstein and J. B. Keller, Asymptotic behavior of stability regions for Hill’s equation (to appear).
- Stephanos Venakides, The zero dispersion limit of the Korteweg-de Vries equation for initial potentials with nontrivial reflection coefficient, Comm. Pure Appl. Math. 38 (1985), no. 2, 125–155. MR 780069, DOI https://doi.org/10.1002/cpa.3160380202
- Stephanos Venakides, The generation of modulated wavetrains in the solution of the Korteweg-de Vries equation, Comm. Pure Appl. Math. 38 (1985), no. 6, 883–909. MR 812354, DOI https://doi.org/10.1002/cpa.3160380616
- G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0483954 D. W. McLaughlin, On the construction of modulating multiphase wavetrains, Preprint, University of Arizona, 1982.
- M. Gregory Forest and David W. McLaughlin, Modulations of sinh-Gordon and sine-Gordon wavetrains, Stud. Appl. Math. 68 (1983), no. 1, 11–59. MR 686249, DOI https://doi.org/10.1002/sapm198368111
- M. Gregory Forest and David W. McLaughlin, Modulations of perturbed KdV wavetrains, SIAM J. Appl. Math. 44 (1984), no. 2, 287–300. MR 739305, DOI https://doi.org/10.1137/0144021
- Nicholas Ercolani, M. Gregory Forest, and David W. McLaughlin, Modulational stability of two-phase sine-Gordon wavetrains, Stud. Appl. Math. 71 (1984), no. 2, 91–101. MR 760226, DOI https://doi.org/10.1002/sapm198471291
- Maria Elena Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations 7 (1982), no. 8, 959–1000. MR 668586, DOI https://doi.org/10.1080/03605308208820242
- Ronald J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), no. 3, 223–270. MR 775191, DOI https://doi.org/10.1007/BF00752112
- L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398 C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation: Multiwell initial data, preprint.
- Stephanos Venakides, The small dispersion limit of the Korteweg-de Vries equation, Wave motion: theory, modelling, and computation (Berkeley, Calif., 1986) Math. Sci. Res. Inst. Publ., vol. 7, Springer, New York, 1987, pp. 295–336. MR 920841, DOI https://doi.org/10.1007/978-1-4613-9583-6_12
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35Q20, 35B25, 35L67
Retrieve articles in all journals with MSC: 35Q20, 35B25, 35L67
Additional Information
Article copyright:
© Copyright 1987
American Mathematical Society