Proof of a conjecture of Kostant
HTML articles powered by AMS MathViewer
- by Dragomir Ž. Đoković PDF
- Trans. Amer. Math. Soc. 302 (1987), 577-585 Request permission
Abstract:
Let ${\mathfrak {g}_0} = {\mathfrak {k}_0} + {\mathfrak {p}_0}$ be a Cartan decomposition of a semisimple real Lie algebra and $\mathfrak {g} = \mathfrak {k} + \mathfrak {p}$ its complexification. Denote by $G$ the adjoint group of $\mathfrak {g}$ and by ${G_0},K,{K_0}$ the connected subgroups of $G$ with respective Lie algebras ${\mathfrak {g}_0},\mathfrak {k},{\mathfrak {k}_0}$. A conjecture of Kostant asserts that there is a bijection between the ${G_0}$-conjugacy classes of nilpotent elements in ${\mathfrak {g}_0}$ and the $K$-orbits of nilpotent elements in $\mathfrak {p}$ which is given explicitly by the so-called Cayley transformation. This conjecture is proved in the paper.References
- L. V. Antonyan, Classification of four-vectors of an eight-dimensional space, Trudy Sem. Vektor. Tenzor. Anal. 20 (1981), 144–161 (Russian). MR 622013
- Dan Barbasch, Fourier inversion for unipotent invariant integrals, Trans. Amer. Math. Soc. 249 (1979), no. 1, 51–83. MR 526310, DOI 10.1090/S0002-9947-1979-0526310-9
- N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Hermann, Paris, 1975 (French). Actualités Sci. Indust., No. 1364. MR 0453824
- Dragomir Ž. Djoković, Classification of trivectors of an eight-dimensional real vector space, Linear and Multilinear Algebra 13 (1983), no. 1, 3–39. MR 691457, DOI 10.1080/03081088308817501
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
- Gordon Bradley Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J. Algebra 23 (1972), 137–163. MR 308228, DOI 10.1016/0021-8693(72)90052-X D. R. King, The Cayley transform of a nilpotent conjugacy class in a real semi-simple Lie algebra (preprint).
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- L. Preiss Rothschild, Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc. 168 (1972), 403–421. MR 349778, DOI 10.1090/S0002-9947-1972-0349778-3
- È. B. Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1072–1112 (Russian). MR 0302779
- È. B. Vinberg, The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR 225 (1975), no. 4, 745–748 (Russian). MR 0506488
- È. B. Vinberg, Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vektor. Tenzor. Anal. 19 (1979), 155–177 (Russian). MR 549013
- È. B. Vinberg and A. G. Èlašvili, A classification of the three-vectors of nine-dimensional space, Trudy Sem. Vektor. Tenzor. Anal. 18 (1978), 197–233 (Russian). MR 504529
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 577-585
- MSC: Primary 17B20; Secondary 17B45, 22E60
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891636-0
- MathSciNet review: 891636