The continuous -Jacobi transform and its inverse when is a positive integer

Authors:
G. G. Walter and A. I. Zayed

Journal:
Trans. Amer. Math. Soc. **305** (1988), 653-664

MSC:
Primary 44A15; Secondary 33A65

DOI:
https://doi.org/10.1090/S0002-9947-1988-0924774-5

MathSciNet review:
924774

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The continuous -Jacobi transform is introduced as an extension of the discrete Jacobi transform by replacing the polynomial kernel by a continuous one. An inverse transform is found for both the standard and a modified normalization and applied to a version of the sampling theorem. An orthogonal system forming a basis for the range is shown to have some unusual properties, and is used to obtain the inverse.

**[1]**P. L. Butzer, R. L. Stens, and M. Wehrens,*The continuous Legendre transform, its inverse transform, and applications*, Internat. J. Math. Math. Sci.**3**(1980), no. 1, 47–67. MR**576629**, https://doi.org/10.1155/S016117128000004X**[2]**L. L. Campbell,*A comparison of the sampling theorems of Kramer and Whittaker*, J. Soc. Indust. Appl. Math.**12**(1964), 117–130. MR**164173****[3]**E. Y. Deeba and E. L. Koh,*The continuous Jacobi transform*, Internat. J. Math. Math. Sci.**6**(1983), no. 1, 145–160. MR**689452**, https://doi.org/10.1155/S0161171283000137**[4]**A. Erdélyi et al.,*Higher transcendental functions*, Vol. 1, McGraw-Hill, New York, 1953.**[5]**A. J. Jerri,*On the application of some interpolating functions in physics*, J. Res. Nat. Bur. Standards Sect. B**73B**(1969), 241–245. MR**0256026****[6]**-,*Sampling expansion for the*-*Laguerre integral transform*, J. Res. Nat. Bur. Standards Sect. B Math. Sci.**80B**(1976), 415-418.**[7]**H. P. Kramer,*A generalized sampling theorem*, J. Math. and Phys.**38**(1959/60), 68–72. MR**103786**, https://doi.org/10.1002/sapm195938168**[8]**Tom H. Koornwinder,*Jacobi functions and analysis on noncompact semisimple Lie groups*, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 1–85. MR**774055****[9]**G. Szegö,*Orthogonal polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1974.**[10]**G. Walter,*A finite continuous Gegenbaur transform and its inverse*(to appear).**[11]**A. H. Zemanian,*Generalized integral transformations*, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1968. Pure and Applied Mathematics, Vol. XVIII. MR**0423007**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
44A15,
33A65

Retrieve articles in all journals with MSC: 44A15, 33A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0924774-5

Keywords:
Jacobi functions,
inverse transform,
Shannon sampling theorem

Article copyright:
© Copyright 1988
American Mathematical Society