## Fixed points of arc-component-preserving maps

HTML articles powered by AMS MathViewer

- by Charles L. Hagopian PDF
- Trans. Amer. Math. Soc.
**306**(1988), 411-420 Request permission

## Abstract:

The following classical problem remains unsolved: If $M$ is a plane continuum that does not separate the plane and $f$ is a map of $M$ into $M$, must $f$ have a fixed point? We prove that the answer is yes if $f$ maps each arc-component of $M$ into itself. Since every deformation of a space preserves its arc-components, this result establishes the fixed-point property for deformations of nonseparating plane continua. It also generalizes the author’s theorem [**10**] that every arcwise connected nonseparating plane continuum has the fixed-point property. Our proof shows that every arc-component-preserving map of an indecomposable plane continuum has a fixed point. We also prove that every tree-like continuum that does not contain uncountably many disjoint triods has the fixed-point property for arc-component-preserving maps.

## References

- Harold Bell,
*On fixed point properties of plane continua*, Trans. Amer. Math. Soc.**128**(1967), 539–548. MR**214036**, DOI 10.1090/S0002-9947-1967-0214036-2 - David P. Bellamy,
*A tree-like continuum without the fixed-point property*, Houston J. Math.**6**(1980), no. 1, 1–13. MR**575909** - R. H. Bing,
*Embedding circle-like continua in the plane*, Canadian J. Math.**14**(1962), 113–128. MR**131865**, DOI 10.4153/CJM-1962-009-3 - R. H. Bing,
*The elusive fixed point property*, Amer. Math. Monthly**76**(1969), 119–132. MR**236908**, DOI 10.2307/2317258 - K. Borsuk,
*A theorem on fixed points*, Bull. Acad. Polon. Sci. Cl. III.**2**(1954), 17–20. MR**0064393** - Robert F. Brown,
*The Lefschetz fixed point theorem*, Scott, Foresman & Co., Glenview, Ill.-London, 1971. MR**0283793** - Eldon Dyer,
*A fixed point theorem*, Proc. Amer. Math. Soc.**7**(1956), 662–672. MR**78693**, DOI 10.1090/S0002-9939-1956-0078693-4 - Edward Fadell,
*Recent results in the fixed point theory of continuous maps*, Bull. Amer. Math. Soc.**76**(1970), 10–29. MR**271935**, DOI 10.1090/S0002-9904-1970-12358-8 - F. B. Fuller,
*The existence of periodic points*, Ann. of Math. (2)**57**(1953), 229–230. MR**52764**, DOI 10.2307/1969856 - Charles L. Hagopian,
*A fixed point theorem for plane continua*, Bull. Amer. Math. Soc.**77**(1971), 351–354. MR**273591**, DOI 10.1090/S0002-9904-1971-12690-3 - Charles L. Hagopian,
*Another fixed point theorem for plane continua*, Proc. Amer. Math. Soc.**31**(1972), 627–628. MR**286093**, DOI 10.1090/S0002-9939-1972-0286093-6 - Charles L. Hagopian,
*Uniquely arcwise connected plane continua have the fixed-point property*, Trans. Amer. Math. Soc.**248**(1979), no. 1, 85–104. MR**521694**, DOI 10.1090/S0002-9947-1979-0521694-X - Charles L. Hagopian,
*The fixed-point property for deformations of uniquely arcwise connected continua*, Topology Appl.**24**(1986), no. 1-3, 207–212. Special volume in honor of R. H. Bing (1914–1986). MR**872492**, DOI 10.1016/0166-8641(86)90063-5 - W. T. Ingram,
*Concerning non-planar circle-like continua*, Canadian J. Math.**19**(1967), 242–250. MR**214037**, DOI 10.4153/CJM-1967-016-3 - J. Krasinkiewicz,
*Concerning the boundaries of plane continua and the fixed point property*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**21**(1973), 427–431 (English, with Russian summary). MR**336716** - J. Krasinkiewicz,
*Concerning the accessibility of composants of indecomposable plane continua*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**21**(1973), 621–628 (English, with Russian summary). MR**341436** - K. Kuratowski,
*Topology. Vol. II*, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR**0259835** - Wayne Lewis,
*Continuum theory problems*, Proceedings of the 1983 topology conference (Houston, Tex., 1983), 1983, pp. 361–394. MR**765091** - Roman Mańka,
*Association and fixed points*, Fund. Math.**91**(1976), no. 2, 105–121. MR**413062**, DOI 10.4064/fm-91-2-105-121 - M. M. Marsh,
*A fixed point theorem for inverse limits of fans*, Proc. Amer. Math. Soc.**91**(1984), no. 1, 139–142. MR**735580**, DOI 10.1090/S0002-9939-1984-0735580-0 - Piotr Minc,
*Generalized retracts and the Lefschetz fixed point theorem*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**25**(1977), no. 3, 291–299 (English, with Russian summary). MR**461494**
—, - R. L. Moore,
*Foundations of point set theory*, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722** - Lex G. Oversteegen and James T. Rogers Jr.,
*An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point*, Houston J. Math.**6**(1980), no. 4, 549–564. MR**621749** - Lex G. Oversteegen and James T. Rogers Jr.,
*Fixed-point-free maps on tree-like continua*, Topology Appl.**13**(1982), no. 1, 85–95. MR**637430**, DOI 10.1016/0166-8641(82)90010-4 - H. W. Siegberg and G. Skordev,
*Fixed point index and chain approximations*, Pacific J. Math.**102**(1982), no. 2, 455–486. MR**686564** - K. Sieklucki,
*On a class of plane acyclic continua with the fixed point property*, Fund. Math.**63**(1968), 257–278. MR**240794**, DOI 10.4064/fm-63-3-257-278 - Gordon Thomas Whyburn,
*Analytic topology*, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR**0182943** - G. S. Young,
*Fixed-point theorems for arcwise connected continua*, Proc. Amer. Math. Soc.**11**(1960), 880–884. MR**117711**, DOI 10.1090/S0002-9939-1960-0117711-2

*A fixed point theorem for weakly chainable plane continua*, preprint. R. L. Moore,

*Concerning triodic continua in the plane*, Fund. Math.

**13**(1929), 261-263.

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**306**(1988), 411-420 - MSC: Primary 54F20; Secondary 54H25
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927698-2
- MathSciNet review: 927698