Normal derivative for bounded domains with general boundary
HTML articles powered by AMS MathViewer
- by Guang Lu Gong, Min Ping Qian and Martin L. Silverstein
- Trans. Amer. Math. Soc. 308 (1988), 785-809
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951628-0
- PDF | Request permission
Abstract:
Let $D$ be a general bounded domain in the Euclidean space ${R^n}$. A Brownian motion which enters from and returns to the boundary symmetrically is used to define the normal derivative as a functional for $f$ with $f$, $\nabla f$ and $\Delta f$ all in ${L^2}$ on $D$. The corresponding Neumann condition (normal derivative $= 0$) is an honest boundary condition for the ${L^2}$ generator of reflected Brownian notion on $D$. A conditioning argument shows that for $D$ and $f$ sufficiently smooth this general definition of the normal derivative agrees with the usual one.References
- Richard Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1984. MR 750829
- Masatoshi Fukushima, On transition probabilities of symmetric strong Markov processes, J. Math. Kyoto Univ. 12 (1972), 431–450. MR 341626, DOI 10.1215/kjm/1250523475
- Sidney C. Port and Charles J. Stone, Brownian motion and classical potential theory, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0492329
- Irving E. Segal and Ray A. Kunze, Integrals and operators, McGraw-Hill Book Co., New York-Toronto-London, 1968. MR 0217244
- Martin L. Silverstein, Symmetric Markov processes, Lecture Notes in Mathematics, Vol. 426, Springer-Verlag, Berlin-New York, 1974. MR 0386032, DOI 10.1007/BFb0073683
- Martin L. Silverstein, Boundary theory for symmetric Markov processes, Lecture Notes in Mathematics, Vol. 516, Springer-Verlag, Berlin-New York, 1976. MR 0451422, DOI 10.1007/BFb0081336
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 —(1970b), Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N.J.
- G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313–340. MR 123364
- Michel Weil, Quasi-processus, Séminaire de Probabilités, IV (Univ. Strasbourg, 1968/69) Lecture Notes in Mathematics, Vol. 124, Springer, Berlin, 1970, pp. 216–239 (French). MR 0266305
- Masatoshi Fukushima, On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities, J. Math. Soc. Japan 21 (1969), 58–93. MR 236998, DOI 10.2969/jmsj/02110058
- Masatoshi Fukushima, A construction of reflecting barrier Brownian motions for bounded domains, Osaka Math. J. 4 (1967), 183–215. MR 231444 —(1980), Dirichlet forms and Markov processes, Kodansha; North-Holland. R. F. Gundy (1987), Private communication.
- Krzysztof Burdzy, Brownian excursions from hyperplanes and smooth surfaces, Trans. Amer. Math. Soc. 295 (1986), no. 1, 35–57. MR 831187, DOI 10.1090/S0002-9947-1986-0831187-1
- William Feller, On the intrinsic form for second order differential operators, Illinois J. Math. 2 (1958), 1–18. MR 92047
- David S. Jerison and Carlos E. Kenig, Boundary value problems on Lipschitz domains, Studies in partial differential equations, MAA Stud. Math., vol. 23, Math. Assoc. America, Washington, DC, 1982, pp. 1–68. MR 716504
- Richard A. Hunt and Richard L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. MR 274787, DOI 10.1090/S0002-9947-1970-0274787-0
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, DOI 10.1002/cpa.3160350206
- H. F. Weinberger, Symmetrization in uniformly elliptic problems, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 424–428. MR 0145191
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 785-809
- MSC: Primary 60J65; Secondary 35A99, 35R60
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951628-0
- MathSciNet review: 951628