A Picard theorem with an application to minimal surfaces
HTML articles powered by AMS MathViewer
- by Peter Hall
- Trans. Amer. Math. Soc. 314 (1989), 597-603
- DOI: https://doi.org/10.1090/S0002-9947-1989-0978376-6
- PDF | Request permission
Abstract:
We prove a Picard theorem for holomorphic maps from ${\mathbf {C}}$ to a quadric hypersurface. This implies a theorem on the number of directions in general position omitted by the normals to a minimal surface of the conformal type of ${\mathbf {C}}$.References
- Shiing-shen Chern and Robert Osserman, Complete minimal surfaces in euclidean $n$-space, J. Analyse Math. 19 (1967), 15–34. MR 226514, DOI 10.1007/BF02788707
- Otto Forster, Lectures on Riemann surfaces, Graduate Texts in Mathematics, vol. 81, Springer-Verlag, New York-Berlin, 1981. Translated from the German by Bruce Gilligan. MR 648106
- Mark L. Green, Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc. 169 (1972), 89–103. MR 308433, DOI 10.1090/S0002-9947-1972-0308433-6
- Mark Lee Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43–75. MR 367302, DOI 10.2307/2373660
- David A. Hoffman and Robert Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105. MR 587748, DOI 10.1090/memo/0236
- Serge Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159–205. MR 828820, DOI 10.1090/S0273-0979-1986-15426-1
- H. Blaine Lawson Jr., Lectures on minimal submanifolds. Vol. I, MonografĂas de Matemática [Mathematical Monographs], vol. 14, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977. MR 527121
- Rolf Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Chelsea Publishing Co., New York, 1974 (French). Reprinting of the 1929 original. MR 0417418
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 597-603
- MSC: Primary 53A10; Secondary 32H25
- DOI: https://doi.org/10.1090/S0002-9947-1989-0978376-6
- MathSciNet review: 978376