Functional equations, tempered distributions and Fourier transforms
HTML articles powered by AMS MathViewer
- by John A. Baker
- Trans. Amer. Math. Soc. 315 (1989), 57-68
- DOI: https://doi.org/10.1090/S0002-9947-1989-0979965-5
- PDF | Request permission
Abstract:
This paper introduces a method for solving functional equations based on the Fourier transform of tempered distributions.References
- J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser. MR 0208210
- J. Aczél, H. Haruki, M. A. McKiernan, and G. N. Sakovič, General and regular solutions of functional equations characterizing harmonic polynomials, Aequationes Math. 1 (1968), 37–53. MR 279471, DOI 10.1007/BF01817556
- Donald L. Bentley and Kenneth L. Cooke, Linear algebra with differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1973. MR 0354706
- D. Ž. Djoković, A representation theorem for $(X_{1}-1)(X_{2} -1)\cdots (X_{n}-1)$ and its applications, Ann. Polon. Math. 22 (1969/70), 189–198. MR 265798, DOI 10.4064/ap-22-2-189-198
- I. Fenyö, Über eine Lösungsmethode gewisser Funktionalgleichungen, Acta Math. Acad. Sci. Hungar. 7 (1956), 383–396 (German, with Russian summary). MR 86261, DOI 10.1007/BF02020533
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- J. H. B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957), 28–56. MR 94610, DOI 10.1090/S0002-9947-1957-0094610-0
- Marek Kuczma, Functional equations in a single variable, Monografie Matematyczne, Tom 46, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. MR 0228862
- Svetozar Kurepa, On the quadratic functional, Acad. Serbe Sci. Publ. Inst. Math. 13 (1961), 57–72. MR 131187
- S. Mazur and W. Orlicz, Sur les espaces métriques linéaires. I, Studia Math. 10 (1948), 184–208 (French). MR 29472, DOI 10.4064/sm-10-1-184-208
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Halina Światak, On the regularity of the distributional and continuous solutions of the functional equations \[ \sum _{i=1}^{k}a_{l}(x,t)f(x+\varphi _{l}(t))= b(x,t)\], Aequationes Math. 1 (1968), 6–19. MR 279474, DOI 10.1007/BF01817554
- L. Székelyhidi, Almost periodicity and functional equations, Aequationes Math. 26 (1983), no. 2-3, 163–175. MR 753528, DOI 10.1007/BF02189679
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 315 (1989), 57-68
- MSC: Primary 39B40; Secondary 42A38, 46F10
- DOI: https://doi.org/10.1090/S0002-9947-1989-0979965-5
- MathSciNet review: 979965