## On the homology of $\textrm {SU}(n)$ instantons

HTML articles powered by AMS MathViewer

- by Charles P. Boyer, Benjamin M. Mann and Daniel Waggoner PDF
- Trans. Amer. Math. Soc.
**323**(1991), 529-561 Request permission

## Abstract:

In this paper we study the homology of the moduli spaces of instantons associated to principal ${\mathbf {SU}}(n)$ bundles over the four-sphere. This is accomplished by exploiting an "iterated loop space" structure implicit in the disjoint union of all moduli spaces associated to a fixed ${\mathbf {SU}}(n)$ with arbitrary instanton number and relating these spaces to the known homology structure of the four-fold loop space on $B{\mathbf {SU}}(n)$.## References

- Tatsuji Kudo and Shôrô Araki,
*Topology of $H_n$-spaces and $H$-squaring operations*, Mem. Fac. Sci. Kyūsyū Univ. A**10**(1956), 85–120. MR**87948**, DOI 10.2206/kyushumfs.10.85 - M. F. Atiyah,
*Geometry on Yang-Mills fields*, Scuola Normale Superiore, Pisa, 1979. MR**554924** - M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin,
*Construction of instantons*, Phys. Lett. A**65**(1978), no. 3, 185–187. MR**598562**, DOI 10.1016/0375-9601(78)90141-X - M. F. Atiyah, N. J. Hitchin, and I. M. Singer,
*Self-duality in four-dimensional Riemannian geometry*, Proc. Roy. Soc. London Ser. A**362**(1978), no. 1711, 425–461. MR**506229**, DOI 10.1098/rspa.1978.0143 - M. F. Atiyah and J. D. S. Jones,
*Topological aspects of Yang-Mills theory*, Comm. Math. Phys.**61**(1978), no. 2, 97–118. MR**503187**, DOI 10.1007/BF01609489 - J. M. Boardman and R. M. Vogt,
*Homotopy invariant algebraic structures on topological spaces*, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR**0420609**, DOI 10.1007/BFb0068547 - Charles P. Boyer and Benjamin M. Mann,
*Homology operations on instantons*, J. Differential Geom.**28**(1988), no. 3, 423–465. MR**965223** - Charles P. Boyer and Benjamin M. Mann,
*Instantons and homotopy*, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 87–102. MR**1000369**, DOI 10.1007/BFb0085220 - William Browder,
*Homology operations and loop spaces*, Illinois J. Math.**4**(1960), 347–357. MR**120646** - Frederick R. Cohen, Thomas J. Lada, and J. Peter May,
*The homology of iterated loop spaces*, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR**0436146**, DOI 10.1007/BFb0080464 - S. K. Donaldson,
*Instantons and geometric invariant theory*, Comm. Math. Phys.**93**(1984), no. 4, 453–460. MR**763753**, DOI 10.1007/BF01212289 - Eldon Dyer and R. K. Lashof,
*Homology of iterated loop spaces*, Amer. J. Math.**84**(1962), 35–88. MR**141112**, DOI 10.2307/2372804 - Daniel S. Freed and Karen K. Uhlenbeck,
*Instantons and four-manifolds*, Mathematical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1984. MR**757358**, DOI 10.1007/978-1-4684-0258-2 - David Groisser and Thomas H. Parker,
*The geometry of the Yang-Mills moduli space for definite manifolds*, J. Differential Geom.**29**(1989), no. 3, 499–544. MR**992329** - N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček,
*Hyper-Kähler metrics and supersymmetry*, Comm. Math. Phys.**108**(1987), no. 4, 535–589. MR**877637**, DOI 10.1007/BF01214418 - Jacques Hurtubise,
*Instantons and jumping lines*, Comm. Math. Phys.**105**(1986), no. 1, 107–122. MR**847130**, DOI 10.1007/BF01212344 - H. Blaine Lawson Jr.,
*The theory of gauge fields in four dimensions*, CBMS Regional Conference Series in Mathematics, vol. 58, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985. MR**799712**, DOI 10.1090/cbms/058 - J. M. Boardman and R. M. Vogt,
*Homotopy invariant algebraic structures on topological spaces*, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR**0420609**, DOI 10.1007/BFb0068547 - R. James Milgram,
*Iterated loop spaces*, Ann. of Math. (2)**84**(1966), 386–403. MR**206951**, DOI 10.2307/1970453 - R. James Milgram,
*The $\textrm {mod}\ 2$ spherical characteristic classes*, Ann. of Math. (2)**92**(1970), 238–261. MR**263100**, DOI 10.2307/1970836 - J. Milnor,
*Morse theory*, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR**0163331**, DOI 10.1515/9781400881802 - M. S. Narasimhan and S. Ramanan,
*Existence of universal connections*, Amer. J. Math.**83**(1961), 563–572. MR**133772**, DOI 10.2307/2372896 - Graeme Segal,
*Configuration-spaces and iterated loop-spaces*, Invent. Math.**21**(1973), 213–221. MR**331377**, DOI 10.1007/BF01390197 - Clifford Henry Taubes,
*Stability in Yang-Mills theories*, Comm. Math. Phys.**91**(1983), no. 2, 235–263. MR**723549**, DOI 10.1007/BF01211160 - Clifford Henry Taubes,
*Path-connected Yang-Mills moduli spaces*, J. Differential Geom.**19**(1984), no. 2, 337–392. MR**755230** - Clifford Henry Taubes,
*The stable topology of self-dual moduli spaces*, J. Differential Geom.**29**(1989), no. 1, 163–230. MR**978084**
D. Waggoner, - George W. Whitehead,
*Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR**516508**, DOI 10.1007/978-1-4612-6318-0

*Loop spaces and the classical unitary groups*, Ph.D. Thesis, University of Kentucky, 1985.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**323**(1991), 529-561 - MSC: Primary 58D27; Secondary 53C07, 55R40
- DOI: https://doi.org/10.1090/S0002-9947-1991-1034658-2
- MathSciNet review: 1034658