$L^ p$ bounds for spectral multipliers on nilpotent groups
HTML articles powered by AMS MathViewer
- by Michael Christ
- Trans. Amer. Math. Soc. 328 (1991), 73-81
- DOI: https://doi.org/10.1090/S0002-9947-1991-1104196-7
- PDF | Request permission
Abstract:
A criterion is given for the ${L^p}$ boundedness of a class of spectral multiplier operators associated to left-invariant, homogeneous subelliptic second-order differential operators on nilpotent Lie groups, generalizing a theorem of Hörmander for radial Fourier multipliers on Euclidean space. The order of differentiability required is half the homogeneous dimension of the group, improving previous results in the same direction.References
- F. M. Christ and C. D. Sogge, The weak type $L^1$ convergence of eigenfunction expansions for pseudodifferential operators, Invent. Math. 94 (1988), no. 2, 421–453. MR 958838, DOI 10.1007/BF01394331
- E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), no. 2, 319–333. MR 882426, DOI 10.2307/2374577
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Andrzej Hulanicki and Joe W. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), no. 2, 703–715. MR 701519, DOI 10.1090/S0002-9947-1983-0701519-0
- David S. Jerison and Antonio Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), no. 4, 835–854. MR 865430, DOI 10.1512/iumj.1986.35.35043
- S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 2, 391–442. MR 914028
- S. Kusuoka and D. Stroock, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. (2) 127 (1988), no. 1, 165–189. MR 924675, DOI 10.2307/1971418
- Giancarlo Mauceri and Stefano Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), no. 3-4, 141–154. MR 1125759, DOI 10.4171/RMI/100
- Richard Melrose, Propagation for the wave group of a positive subelliptic second-order differential operator, Hyperbolic equations and related topics (Katata/Kyoto, 1984) Academic Press, Boston, MA, 1986, pp. 181–192. MR 925249 D. Müller, On Riesz means of eigenfunction expansions for the Kohn-Laplacian, preprint.
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Nicholas Th. Varopoulos, Semi-groupes d’opérateurs sur les espaces $L^p$, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 19, 865–868 (French, with English summary). MR 823141
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 328 (1991), 73-81
- MSC: Primary 42B15; Secondary 22E30, 35P99, 43A22
- DOI: https://doi.org/10.1090/S0002-9947-1991-1104196-7
- MathSciNet review: 1104196