## Hypersurfaces in space forms satisfying the condition $\Delta x=Ax+B$

HTML articles powered by AMS MathViewer

- by Luis J. Alías, Angel Ferrández and Pascual Lucas PDF
- Trans. Amer. Math. Soc.
**347**(1995), 1793-1801 Request permission

## Abstract:

In this work we study and classify pseudo-Riemannian hypersurfaces in pseudo-Riemannian space forms which satisfy the condition $\Delta x = Ax + B$, where $A$ is an endomorphism, $B$ is a constant vector, and $x$ stands for the isometric immersion. We prove that the family of such hypersurfaces consists of open pieces of minimal hypersurfaces, totally umbilical hypersurfaces, products of two nonflat totally umbilical submanifolds, and a special class of quadratic hypersurfaces.## References

- Luis J. Alías, Angel Ferrández, and Pascual Lucas,
*Surfaces in the $3$-dimensional Lorentz-Minkowski space satisfying $\Delta x=Ax+B$*, Pacific J. Math.**156**(1992), no. 2, 201–208. MR**1186802**, DOI 10.2140/pjm.1992.156.201 - Luis J. Alías, Angel Ferrández, and Pascual Lucas,
*Submanifolds in pseudo-Euclidean spaces satisfying the condition $\Delta x=Ax+B$*, Geom. Dedicata**42**(1992), no. 3, 345–354. MR**1164541**, DOI 10.1007/BF02414072 - Bang-Yen Chen,
*Finite-type pseudo-Riemannian submanifolds*, Tamkang J. Math.**17**(1986), no. 2, 137–151. MR**872686** - Bang-Yen Chen and Mira Petrovic,
*On spectral decomposition of immersions of finite type*, Bull. Austral. Math. Soc.**44**(1991), no. 1, 117–129. MR**1120399**, DOI 10.1017/S0004972700029518 - Franki Dillen, Johan Pas, and Leopold Verstraelen,
*On surfaces of finite type in Euclidean $3$-space*, Kodai Math. J.**13**(1990), no. 1, 10–21. MR**1047590**, DOI 10.2996/kmj/1138039155 - Jörg Hahn,
*Isoparametric hypersurfaces in the pseudo-Riemannian space forms*, Math. Z.**187**(1984), no. 2, 195–208. MR**753432**, DOI 10.1007/BF01161704 - Th. Hasanis and Th. Vlachos,
*Hypersurfaces of $E^{n+1}$ satisfying $\Delta x=Ax+B$*, J. Austral. Math. Soc. Ser. A**53**(1992), no. 3, 377–384. MR**1187856** - H. Blaine Lawson Jr.,
*Local rigidity theorems for minimal hypersurfaces*, Ann. of Math. (2)**89**(1969), 187–197. MR**238229**, DOI 10.2307/1970816 - Martin A. Magid,
*Isometric immersions of Lorentz space with parallel second fundamental forms*, Tsukuba J. Math.**8**(1984), no. 1, 31–54. MR**747443**, DOI 10.21099/tkbjm/1496159942 - Joonsang Park,
*Hypersurfaces satisfying the equation $\Delta x=Rx+b$*, Proc. Amer. Math. Soc.**120**(1994), no. 1, 317–328. MR**1189750**, DOI 10.1090/S0002-9939-1994-1189750-7 - Patrick J. Ryan,
*Homogeneity and some curvature conditions for hypersurfaces*, Tohoku Math. J. (2)**21**(1969), 363–388. MR**253243**, DOI 10.2748/tmj/1178242949

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 1793-1801 - MSC: Primary 53C40; Secondary 53C42, 53C50
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257095-8
- MathSciNet review: 1257095