Singular limit of solutions of $u_ t=\Delta u^ m-A\cdot \nabla (u^ q/q)$ as $q\to \infty$

Author:
Kin Ming Hui

Journal:
Trans. Amer. Math. Soc. **347** (1995), 1687-1712

MSC:
Primary 35K55; Secondary 35B40

DOI:
https://doi.org/10.1090/S0002-9947-1995-1290718-6

MathSciNet review:
1290718

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We will show that the solutions of ${u_t} = \Delta {u^m} - A\nabla ({u^q}/q)$ in ${R^n} \times (0,T),T > 0,m > 1,u(x,0) = f(x) \in {L^1}({R^n}) \cap {L^\infty }({R^n})$ converge weakly in ${({L^\infty }(G))^ * }$ for any compact subset $G$ of ${R^n} \times (0,T)$ as $q \to \infty$ to the solution of the porous medium equation ${\upsilon _t} = \Delta {\upsilon ^m}$ in ${R^n} \times (0,T)$ with $\upsilon (x,0) = g(x)$ where $g \in {L^1}({R^n}),0 \leqslant g \leqslant 1$, satisfies $g(x) + {(g(x))_{{x_1}}} = f(x)\quad {\text {in}}\quad \mathcal {D}’\left ( {{R^n}} \right )$ for some function $\tilde {g}(x) \in {L^1}({R^n}),\quad \tilde {g}(x) \geqslant 0$ such that $g(x) = f(x),\quad \tilde {g}(x) = 0$ whenever $g(x) < 1$ a.e. $x \in {R^n}$. The convergence is uniform on compact subsets of ${R^n} \times (0,T)\quad {\text {if}}\quad f \in {C_0}({R^n})$.

- Jeffrey R. Anderson,
*Local existence and uniqueness of solutions of degenerate parabolic equations*, Comm. Partial Differential Equations**16**(1991), no. 1, 105–143. MR**1096835**, DOI https://doi.org/10.1080/03605309108820753 - D. G. Aronson,
*The porous medium equation*, Nonlinear diffusion problems (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1224, Springer, Berlin, 1986, pp. 1–46. MR**877986**, DOI https://doi.org/10.1007/BFb0072687 - G. I. Barenblatt,
*On self-similar motions of a compressible fluid in a porous medium*, Akad. Nauk SSSR. Prikl. Mat. Meh.**16**(1952), 679–698 (Russian). MR**0052948**
P. Bénilan, L. Boccardo and M. Herrero, - Luis A. Caffarelli and Avner Friedman,
*Asymptotic behavior of solutions of $u_t=\Delta u^m$ as $m\to \infty $*, Indiana Univ. Math. J.**36**(1987), no. 4, 711–728. MR**916741**, DOI https://doi.org/10.1512/iumj.1987.36.36041 - Björn E. J. Dahlberg, Eugene B. Fabes, and Carlos E. Kenig,
*A Fatou theorem for solutions of the porous medium equation*, Proc. Amer. Math. Soc.**91**(1984), no. 2, 205–212. MR**740172**, DOI https://doi.org/10.1090/S0002-9939-1984-0740172-3 - Björn E. J. Dahlberg and Carlos E. Kenig,
*Nonnegative solutions of generalized porous medium equations*, Rev. Mat. Iberoamericana**2**(1986), no. 3, 267–305. MR**908054** - Jesus Ildefonso Diaz and Robert Kersner,
*On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium*, J. Differential Equations**69**(1987), no. 3, 368–403. MR**903393**, DOI https://doi.org/10.1016/0022-0396%2887%2990125-2 - Miguel Escobedo and Enrike Zuazua,
*Large time behavior for convection-diffusion equations in ${\bf R}^N$*, J. Funct. Anal.**100**(1991), no. 1, 119–161. MR**1124296**, DOI https://doi.org/10.1016/0022-1236%2891%2990105-E - Juan R. Esteban, Ana Rodríguez, and Juan L. Vázquez,
*A nonlinear heat equation with singular diffusivity*, Comm. Partial Differential Equations**13**(1988), no. 8, 985–1039. MR**944437**, DOI https://doi.org/10.1080/03605308808820566 - B. H. Gilding,
*Properties of solutions of an equation in the theory of infiltration*, Arch. Rational Mech. Anal.**65**(1977), no. 3, 203–225. MR**447847**, DOI https://doi.org/10.1007/BF00280441 - B. H. Gilding,
*A nonlinear degenerate parabolic equation*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**4**(1977), no. 3, 393–432. MR**509720** - Miguel A. Herrero and Michel Pierre,
*The Cauchy problem for $u_t=\Delta u^m$ when $0<m<1$*, Trans. Amer. Math. Soc.**291**(1985), no. 1, 145–158. MR**797051**, DOI https://doi.org/10.1090/S0002-9947-1985-0797051-0 - Kin Ming Hui,
*Asymptotic behaviour of solutions of $u_t=\Delta u^m-u^p$ as $p\to \infty $*, Nonlinear Anal.**21**(1993), no. 3, 191–195. MR**1233960**, DOI https://doi.org/10.1016/0362-546X%2893%2990109-6
K. M. Hui, - Robert Kersner,
*Degenerate parabolic equations with general nonlinearities*, Nonlinear Anal.**4**(1980), no. 6, 1043–1062. MR**591298**, DOI https://doi.org/10.1016/0362-546X%2880%2990015-2
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, - Arturo de Pablo and Juan Luis Vázquez,
*Travelling waves and finite propagation in a reaction-diffusion equation*, J. Differential Equations**93**(1991), no. 1, 19–61. MR**1122305**, DOI https://doi.org/10.1016/0022-0396%2891%2990021-Z
L. A. Peletier, - Paul E. Sacks,
*Continuity of solutions of a singular parabolic equation*, Nonlinear Anal.**7**(1983), no. 4, 387–409. MR**696738**, DOI https://doi.org/10.1016/0362-546X%2883%2990092-5 - Paul E. Sacks,
*A singular limit problem for the porous medium equation*, J. Math. Anal. Appl.**140**(1989), no. 2, 456–466. MR**1001869**, DOI https://doi.org/10.1016/0022-247X%2889%2990077-2 - R. E. Showalter and Xiangsheng Xu,
*An approximate scalar conservation law from dynamics of gas absorption*, J. Differential Equations**83**(1990), no. 1, 145–165. MR**1031381**, DOI https://doi.org/10.1016/0022-0396%2890%2990072-W - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Xiangsheng Xu,
*Asymptotic behaviour of solutions of hyperbolic conservation laws $u_t+(u^m)_x=0$ as $m\to \infty $ with inconsistent initial values*, Proc. Roy. Soc. Edinburgh Sect. A**113**(1989), no. 1-2, 61–71. MR**1025454**, DOI https://doi.org/10.1017/S0308210500023957

*On the limit of solutions of*${u_t} = \Delta {u^m}$

*as*$m \to \infty$, Some Topics in Nonlinear PDE’s, Proceedings Int. Conf. Torino 1989, M.Bertsch et al., ed.

*Singular limit of solutions of the generalized*$p$

*-Laplacian equation*, Nonlinear Anal., TMA (to appear).

*Linear and quasilinear equations of parabolic type*, Transl. Math. Monos., Vol. 23, Amer. Math. Soc., Providence, RI, 1968.

*The porous medium equation*, Applications of Nonlinear Analysis in the Physical Sciences, (H. Amann, N. Bazley, and K. Kirchgassner, eds.), Pitman, Boston, 1981.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K55,
35B40

Retrieve articles in all journals with MSC: 35K55, 35B40

Additional Information

Keywords:
Asymptotic behaviour,
porous medium equation with convection term,
existence,
uniqueness,
nonnegative solutions

Article copyright:
© Copyright 1995
American Mathematical Society