Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Singular limit of solutions of $u_ t=\Delta u^ m-A\cdot \nabla (u^ q/q)$ as $q\to \infty$


Author: Kin Ming Hui
Journal: Trans. Amer. Math. Soc. 347 (1995), 1687-1712
MSC: Primary 35K55; Secondary 35B40
DOI: https://doi.org/10.1090/S0002-9947-1995-1290718-6
MathSciNet review: 1290718
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We will show that the solutions of ${u_t} = \Delta {u^m} - A\nabla ({u^q}/q)$ in ${R^n} \times (0,T),T > 0,m > 1,u(x,0) = f(x) \in {L^1}({R^n}) \cap {L^\infty }({R^n})$ converge weakly in ${({L^\infty }(G))^ * }$ for any compact subset $G$ of ${R^n} \times (0,T)$ as $q \to \infty$ to the solution of the porous medium equation ${\upsilon _t} = \Delta {\upsilon ^m}$ in ${R^n} \times (0,T)$ with $\upsilon (x,0) = g(x)$ where $g \in {L^1}({R^n}),0 \leqslant g \leqslant 1$, satisfies $g(x) + {(g(x))_{{x_1}}} = f(x)\quad {\text {in}}\quad \mathcal {D}’\left ( {{R^n}} \right )$ for some function $\tilde {g}(x) \in {L^1}({R^n}),\quad \tilde {g}(x) \geqslant 0$ such that $g(x) = f(x),\quad \tilde {g}(x) = 0$ whenever $g(x) < 1$ a.e. $x \in {R^n}$. The convergence is uniform on compact subsets of ${R^n} \times (0,T)\quad {\text {if}}\quad f \in {C_0}({R^n})$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K55, 35B40

Retrieve articles in all journals with MSC: 35K55, 35B40


Additional Information

Keywords: Asymptotic behaviour, porous medium equation with convection term, existence, uniqueness, nonnegative solutions
Article copyright: © Copyright 1995 American Mathematical Society