The Morse spectrum of linear

flows on vector bundles

Authors:
Fritz Colonius and Wolfgang Kliemann

Journal:
Trans. Amer. Math. Soc. **348** (1996), 4355-4388

MSC (1991):
Primary 58F25, 34C35, 34D08

DOI:
https://doi.org/10.1090/S0002-9947-96-01524-3

MathSciNet review:
1329532

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a linear flow on a vector bundle a spectrum can be defined in the following way: For a chain recurrent component on the projective bundle consider the exponential growth rates associated with (finite time) -chains in , and define the Morse spectrum over as the limits of these growth rates as and . The Morse spectrum of is then the union over all components . This spectrum is a synthesis of the topological approach of Selgrade and Salamon/Zehnder with the spectral concepts based on exponential growth rates, such as the Oseledec spectrum or the dichotomy spectrum of Sacker/Sell. It turns out that contains all Lyapunov exponents of for arbitrary initial values, and the are closed intervals, whose boundary points are actually Lyapunov exponents. Using the fact that is cohomologous to a subflow of a smooth linear flow on a trivial bundle, one can prove integral representations of all Morse and all Lyapunov exponents via smooth ergodic theory. A comparison with other spectral concepts shows that, in general, the Morse spectrum is contained in the topological spectrum and the dichotomy spectrum, but the spectral sets agree if the induced flow on the base space is chain recurrent. However, even in this case, the associated subbundle decompositions of may be finer for the Morse spectrum than for the dynamical spectrum. If one can show that the (closure of the) Floquet spectrum (i.e. the Lyapunov spectrum based on periodic trajectories in ) agrees with the Morse spectrum, then one obtains equality for the Floquet, the entire Oseledec, the Lyapunov, and the Morse spectrum. We present an example (flows induced by vector fields with hyperbolic chain recurrent components on the projective bundle) where this fact can be shown using a version of Bowen's Shadowing Lemma.

**[Ak]**Ethan Akin,*The general topology of dynamical systems*, Graduate Studies in Mathematics, vol. 1, American Mathematical Society, Providence, RI, 1993. MR**1219737****[AN]**Ludwig Arnold and Dinh Cong Nguyen,*Generic properties of Lyapunov exponents*, Random Comput. Dynam.**2**(1994), no. 3-4, 335–345. MR**1315483****[Br1]**I. U. Bronšteĭn,*Transversality implies structural stability*, Dokl. Akad. Nauk SSSR**257**(1981), no. 2, 265–268 (Russian). MR**610165****[Br2]**Bronstein, I.U.,*Nonautonomous Dynamical Systems*(1984), Kishinev (in Russian).**[BC]**I. U. Bronšteĭn and V. F. Černiĭ,*Linear extensions that satisfy the Perron condition. I*, Differentsial′nye Uravneniya**14**(1978), no. 10, 1739–1751, 1915 (Russian). MR**515090****[Ca]**Andrew Carverhill,*Flows of stochastic dynamical systems: ergodic theory*, Stochastics**14**(1985), no. 4, 273–317. MR**805125**, https://doi.org/10.1080/17442508508833343**[CK1]**Fritz Colonius and Wolfgang Kliemann,*Lyapunov exponents of control flows*, Lyapunov exponents (Oberwolfach, 1990) Lecture Notes in Math., vol. 1486, Springer, Berlin, 1991, pp. 331–365. MR**1178969**, https://doi.org/10.1007/BFb0086680**[CK2]**Fritz Colonius and Wolfgang Kliemann,*Remarks on ergodic theory of stochastic flows and control flows*, Diffusion processes and related problems in analysis, Vol. II (Charlotte, NC, 1990) Progr. Probab., vol. 27, Birkhäuser Boston, Boston, MA, 1992, pp. 203–239. MR**1187992****[CK3]**Fritz Colonius and Wolfgang Kliemann,*Some aspects of control systems as dynamical systems*, J. Dynam. Differential Equations**5**(1993), no. 3, 469–494. MR**1235039**, https://doi.org/10.1007/BF01053532**[CK4]**Fritz Colonius and Wolfgang Kliemann,*Linear control semigroups acting on projective space*, J. Dynam. Differential Equations**5**(1993), no. 3, 495–528. MR**1235040**, https://doi.org/10.1007/BF01053533**[CK5]**Colonius, F., W. Kliemann,*Limit behavior and genericity for nonlinear control systems*, J. Differential Equations**109**(1994), 8--41. CMP**94:11****[CK6]**Colonius, F., W. Kliemann,*The Lyapunov spectrum of families of time-varying matrices*, Trans. Amer. Math. Soc.**348**(1996), 4389--4408.**[CK7]**Colonius, F., W. Kliemann,*Asymptotic null-controllability of bilinear systems*, Geometry in Nonlinear Control and Differential Inclusions (Warsaw, 1993), Banach Center Publ., 32, Polish Acad. Sci., Warsaw, 1995, 139-148. CMP**96:05****[CKP]**Brian A. Coomes, Hüseyin Koçak, and Kenneth J. Palmer,*A shadowing theorem for ordinary differential equations*, Z. Angew. Math. Phys.**46**(1995), no. 1, 85–106. MR**1315738**, https://doi.org/10.1007/BF00952258**[Cn]**Charles Conley,*Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR**511133****[Cp]**W. A. Coppel,*Dichotomies in stability theory*, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR**0481196****[DK]**Ju. L. Dalec′kiĭ and M. G. Kreĭn,*Stability of solutions of differential equations in Banach space*, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith; Translations of Mathematical Monographs, Vol. 43. MR**0352639****[EJ]**Robert Ellis and Russell A. Johnson,*Topological dynamics and linear differential systems*, J. Differential Equations**44**(1982), no. 1, 21–39. MR**651685**, https://doi.org/10.1016/0022-0396(82)90023-7**[FS]**John E. Franke and James F. Selgrade,*Hyperbolicity and chain recurrence*, J. Differential Equations**26**(1977), no. 1, 27–36. MR**467834**, https://doi.org/10.1016/0022-0396(77)90096-1**[HPPS]**M. Hirsch, J. Palis, C. Pugh, and M. Shub,*Neighborhoods of hyperbolic sets*, Invent. Math.**9**(1969/70), 121–134. MR**262627**, https://doi.org/10.1007/BF01404552**[JPS]**Russell A. Johnson, Kenneth J. Palmer, and George R. Sell,*Ergodic properties of linear dynamical systems*, SIAM J. Math. Anal.**18**(1987), no. 1, 1–33. MR**871817**, https://doi.org/10.1137/0518001**[Ka]**Max Karoubi,*𝐾-theory*, Springer-Verlag, Berlin-New York, 1978. An introduction; Grundlehren der Mathematischen Wissenschaften, Band 226. MR**0488029****[La]**Latushkin, Y.,*Exact Lyapunov exponents and exponentially separated subbundles*, Partial Differential Equations, J. Wiener and J. Hale (eds.), Pitman, (1992), 91--95.**[LY]**F. Ledrappier and L.-S. Young,*Stability of Lyapunov exponents*, Ergodic Theory Dynam. Systems**11**(1991), no. 3, 469–484. MR**1125884**, https://doi.org/10.1017/S0143385700006283**[Ma]**Ricardo Mañé,*Ergodic theory and differentiable dynamics*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR**889254****[MS]**Ricardo Mañé,*Ergodic theory and differentiable dynamics*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR**889254****[NS]**V. V. Nemytskii and V. V. Stepanov,*Qualitative theory of differential equations*, Princeton Mathematical Series, No. 22, Princeton University Press, Princeton, N.J., 1960. MR**0121520****[Os]**V. I. Oseledec,*A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems*, Trudy Moskov. Mat. Obšč.**19**(1968), 179–210 (Russian). MR**0240280****[Pa]**Kenneth J. Palmer,*Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations*, J. Differential Equations**46**(1982), no. 3, 324–345. MR**681227**, https://doi.org/10.1016/0022-0396(82)90098-5**[Ro]**Clark Robinson,*Stability theorems and hyperbolicity in dynamical systems*, Rocky Mountain J. Math.**7**(1977), no. 3, 425–437. MR**494300**, https://doi.org/10.1216/RMJ-1977-7-3-425**[SS1]**Robert J. Sacker and George R. Sell,*Existence of dichotomies and invariant splittings for linear differential systems. I*, J. Differential Equations**15**(1974), 429–458. MR**341458**, https://doi.org/10.1016/0022-0396(74)90067-9**[SS2]**Robert J. Sacker and George R. Sell,*A spectral theory for linear differential systems*, J. Differential Equations**27**(1978), no. 3, 320–358. MR**501182**, https://doi.org/10.1016/0022-0396(78)90057-8**[SZ]**Dietmar Salamon and Eduard Zehnder,*Flows on vector bundles and hyperbolic sets*, Trans. Amer. Math. Soc.**306**(1988), no. 2, 623–649. MR**933310**, https://doi.org/10.1090/S0002-9947-1988-0933310-9**[Sl]**Sell, G.R.,*Lectures on Linear Differential Systems*, School of Mathematics, University of Minnesota, Minneapolis, Minnesota, (1975).**[Sg]**James F. Selgrade,*Isolated invariant sets for flows on vector bundles*, Trans. Amer. Math. Soc.**203**(1975), 359–390. MR**368080**, https://doi.org/10.1090/S0002-9947-1975-0368080-X**[Si]**L. A. Bunimovich, I. P. Cornfeld, R. L. Dobrushin, M. V. Jakobson, N. B. Maslova, Ya. B. Pesin, Ya. G. Sinaĭ, Yu. M. Sukhov, and A. M. Vershik,*Dynamical systems. II*, Encyclopaedia of Mathematical Sciences, vol. 2, Springer-Verlag, Berlin, 1989. Ergodic theory with applications to dynamical systems and statistical mechanics; Edited and with a preface by Sinaĭ; Translated from the Russian. MR**1024068**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58F25,
34C35,
34D08

Retrieve articles in all journals with MSC (1991): 58F25, 34C35, 34D08

Additional Information

**Fritz Colonius**

Affiliation:
Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany

Email:
colonius@uni-augsburg.de

**Wolfgang Kliemann**

Affiliation:
Department of Mathematics, Iowa State University, Ames, Iowa 50011

Email:
kliemann@iastate.edu

DOI:
https://doi.org/10.1090/S0002-9947-96-01524-3

Keywords:
Chain recurrence,
ergodic theory,
Lyapunov exponents,
dichotomy spectrum,
topological spectrum,
Oselede\u{c} spectrum,
Floquet spectrum,
hyperbolic flows,
shadowing lemma

Received by editor(s):
January 25, 1994

Received by editor(s) in revised form:
March 31, 1995

Additional Notes:
This research was performed during a stimulating visit at the Institute for Mathematics and Its Applications, Minneapolis. It was partially supported by DFG under grant no. Co 124/8-2 and by ONR grant no. N00014-93-1-0868.

Dedicated:
Dedicated to J. L. Massera

Article copyright:
© Copyright 1996
American Mathematical Society