## Linearization, Dold-Puppe stabilization, and Mac Lane’s $Q$-construction

HTML articles powered by AMS MathViewer

- by Brenda Johnson and Randy McCarthy PDF
- Trans. Amer. Math. Soc.
**350**(1998), 1555-1593 Request permission

## Abstract:

In this paper we study linear functors, i.e., functors of chain complexes of modules which preserve direct sums up to quasi-isomorphism, in order to lay the foundation for a further study of the Goodwillie calculus in this setting. We compare the methods of Dold and Puppe, Mac Lane, and Goodwillie for producing linear approximations to functors, and establish conditions under which these methods are equivalent. In addition, we classify linear functors in terms of modules over an explicit differential graded algebra. Several classical results involving Dold-Puppe stabilization and Mac Lane’s $Q$-construction are extended or given new proofs.## References

- Albrecht Dold,
*Homology of symmetric products and other functors of complexes*, Ann. of Math. (2)**68**(1958), 54–80. MR**97057**, DOI 10.2307/1970043 - Albrecht Dold and Dieter Puppe,
*Homologie nicht-additiver Funktoren. Anwendungen*, Ann. Inst. Fourier (Grenoble)**11**(1961), 201–312 (German, with French summary). MR**150183**, DOI 10.5802/aif.114 - Samuel Eilenberg,
*Abstract description of some basic functors*, J. Indian Math. Soc. (N.S.)**24**(1960), 231–234 (1961). MR**125148** - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600–608. MR**11**, DOI 10.2307/1968944 - Thomas G. Goodwillie,
*Calculus. I. The first derivative of pseudoisotopy theory*, $K$-Theory**4**(1990), no. 1, 1–27. MR**1076523**, DOI 10.1007/BF00534191 - Thomas G. Goodwillie,
*Calculus. II. Analytic functors*, $K$-Theory**5**(1991/92), no. 4, 295–332. MR**1162445**, DOI 10.1007/BF00535644 - T.G. Goodwillie,
*Calculus III: The Taylor series of a homotopy functor,*$K$-Theory (to appear). - Mamuka Jibladze and Teimuraz Pirashvili,
*Cohomology of algebraic theories*, J. Algebra**137**(1991), no. 2, 253–296. MR**1094244**, DOI 10.1016/0021-8693(91)90093-N - B. Johnson and R. McCarthy,
*Taylor series for functors of additive categories,*in preparation. - B. Johnson and R. McCarthy,
*A classification of polynomial functors,*in preparation. - Daniel M. Kan,
*Functors involving c.s.s. complexes*, Trans. Amer. Math. Soc.**87**(1958), 330–346. MR**131873**, DOI 10.1090/S0002-9947-1958-0131873-8 - Saunders Mac Lane,
*Homology*, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR**0156879**, DOI 10.1007/978-3-642-62029-4 - Saunders Mac Lane,
*Homologie des anneaux et des modules*, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège; Masson & Cie, Paris, 1957, pp. 55–80 (French). MR**0094374** - J. Peter May,
*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892** - T. I. Pirashvili,
*A spectral sequence of an epimorphism. III. Dold-Puppe derived functors*, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR**83**(1986), 76–87 (Russian, with English summary). MR**881046** - Teimuraz Pirashvili,
*Polynomial approximation of $\textrm {Ext}$ and $\textrm {Tor}$ groups in functor categories*, Comm. Algebra**21**(1993), no. 5, 1705–1719. MR**1213983**, DOI 10.1080/00927879308824647 - Daniel G. Quillen,
*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR**0223432**, DOI 10.1007/BFb0097438 - Daniel Simson,
*Stable derived functors of the second symmetric power functor, second exterior power functor and Whitehead gamma functor*, Colloq. Math.**32**(1974), 49–55. MR**357552**, DOI 10.4064/cm-32-1-49-55 - Daniel Simson and Andrzej Tyc,
*Connected sequences of stable derived functors and their applications*, Dissertationes Math. (Rozprawy Mat.)**111**(1974), 67. MR**377861** - Charles E. Watts,
*Intrinsic characterizations of some additive functors*, Proc. Amer. Math. Soc.**11**(1960), 5–8. MR**118757**, DOI 10.1090/S0002-9939-1960-0118757-0 - Charles A. Weibel,
*An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR**1269324**, DOI 10.1017/CBO9781139644136 - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - Charles Hopkins,
*Rings with minimal condition for left ideals*, Ann. of Math. (2)**40**(1939), 712–730. MR**12**, DOI 10.2307/1968951

## Additional Information

**Brenda Johnson**- Affiliation: Department of Mathematics, Union College, Schenectady, New York 12308
- Email: johnsonb@union.edu
**Randy McCarthy**- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- Email: randy@math.uiuc.edu
- Received by editor(s): July 16, 1996
- Additional Notes: This work was supported by National Science Foundation grant # 1-5-30943.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 1555-1593 - MSC (1991): Primary 18G99, 18E25, 55P65, 55U99
- DOI: https://doi.org/10.1090/S0002-9947-98-02067-4
- MathSciNet review: 1451606