## Based algebras and standard bases for quasi-hereditary algebras

HTML articles powered by AMS MathViewer

- by Jie Du and Hebing Rui PDF
- Trans. Amer. Math. Soc.
**350**(1998), 3207-3235 Request permission

## Abstract:

Quasi-hereditary algebras can be viewed as a Lie theory approach to the theory of finite dimensional algebras. Motivated by the existence of certain nice bases for representations of semisimple Lie algebras and algebraic groups, we will construct in this paper nice bases for (split) quasi-hereditary algebras and characterize them using these bases. We first introduce the notion of a standardly based algebra, which is a generalized version of a cellular algebra introduced by Graham and Lehrer, and discuss their representation theory. The main result is that an algebra over a commutative local noetherian ring with finite rank is split quasi-hereditary if and only if it is standardly full-based. As an application, we will give an elementary proof of the fact that split symmetric algebras are not quasi-hereditary unless they are semisimple. Finally, some relations between standardly based algebras and cellular algebras are also discussed.## References

- C. Berge,
*Principles of combinatorics*, Mathematics in Science and Engineering, Vol. 72, Academic Press, New York-London, 1971. Translated from the French. MR**0270922** - Dan Barbasch and David Vogan,
*Primitive ideals and orbital integrals in complex classical groups*, Math. Ann.**259**(1982), no. 2, 153–199. MR**656661**, DOI 10.1007/BF01457308 - A. A. Beilinson, G. Lusztig, and R. MacPherson,
*A geometric setting for the quantum deformation of $\textrm {GL}_n$*, Duke Math. J.**61**(1990), no. 2, 655–677. MR**1074310**, DOI 10.1215/S0012-7094-90-06124-1 - E. Cline, B. Parshall, and L. Scott,
*Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math.**391**(1988), 85–99. MR**961165** - Edward T. Cline, Brian J. Parshall, and Leonard L. Scott,
*Duality in highest weight categories*, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 7–22. MR**982273**, DOI 10.1090/conm/082/982273 - E. Cline, B. Parshall, and L. Scott,
*Integral and graded quasi-hereditary algebras. I*, J. Algebra**131**(1990), no. 1, 126–160. MR**1055002**, DOI 10.1016/0021-8693(90)90169-O - Richard Dipper and Gordon James,
*Representations of Hecke algebras of general linear groups*, Proc. London Math. Soc. (3)**52**(1986), no. 1, 20–52. MR**812444**, DOI 10.1112/plms/s3-52.1.20 - Richard Dipper and Gordon James,
*The $q$-Schur algebra*, Proc. London Math. Soc. (3)**59**(1989), no. 1, 23–50. MR**997250**, DOI 10.1112/plms/s3-59.1.23 - Richard Dipper and Gordon James,
*$q$-tensor space and $q$-Weyl modules*, Trans. Amer. Math. Soc.**327**(1991), no. 1, 251–282. MR**1012527**, DOI 10.1090/S0002-9947-1991-1012527-1 - Vlastimil Dlab and Claus Michael Ringel,
*Quasi-hereditary algebras*, Illinois J. Math.**33**(1989), no. 2, 280–291. MR**987824** - Vlastimil Dlab and Claus Michael Ringel,
*The module theoretical approach to quasi-hereditary algebras*, Representations of algebras and related topics (Kyoto, 1990) London Math. Soc. Lecture Note Ser., vol. 168, Cambridge Univ. Press, Cambridge, 1992, pp. 200–224. MR**1211481** - Jie Du,
*Kazhdan-Lusztig bases and isomorphism theorems for $q$-Schur algebras*, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 121–140. MR**1197832**, DOI 10.1090/conm/139/1197832 - Jie Du,
*Integral Schur algebras for $\textrm {GL}_2$*, Manuscripta Math.**75**(1992), no. 4, 411–427. MR**1168178**, DOI 10.1007/BF02567095 - Jie Du,
*Canonical bases for irreducible representations of quantum $\textrm {GL}_n$*, Bull. London Math. Soc.**24**(1992), no. 4, 325–334. MR**1165373**, DOI 10.1112/blms/24.4.325 - Jie Du,
*$\textrm {IC}$ bases and quantum linear groups*, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 135–148. MR**1278732** - Jie Du,
*Canonical bases for irreducible representations of quantum $\textrm {GL}_n$. II*, J. London Math. Soc. (2)**51**(1995), no. 3, 461–470. MR**1332884**, DOI 10.1112/jlms/51.3.461 - J. Du,
*A new proof for the canonical bases of type $A$*, preprint, UNSW. - Jie Du and Leonard Scott,
*Lusztig conjectures, old and new. I*, J. Reine Angew. Math.**455**(1994), 141–182. MR**1293877**, DOI 10.1515/crll.1994.455.141 - James A. Green,
*Polynomial representations of $\textrm {GL}_{n}$*, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR**606556** - J. A. Green,
*On certain subalgebras of the Schur algebra*, J. Algebra**131**(1990), no. 1, 265–280. MR**1055008**, DOI 10.1016/0021-8693(90)90175-N - J. A. Green,
*Combinatorics and the Schur algebra*, J. Pure Appl. Algebra**88**(1993), no. 1-3, 89–106. MR**1233316**, DOI 10.1016/0022-4049(93)90015-L - R. Green,
*$q$-Schur algebras and quantized enveloping algebras*, Thesis (1994). - J. J. Graham and G. I. Lehrer,
*Cellular algebras*, Invent. Math.**123**(1996), no. 1, 1–34. MR**1376244**, DOI 10.1007/BF01232365 - Steffen König,
*A criterion for quasi-hereditary, and an abstract straightening formula*, Invent. Math.**127**(1997), no. 3, 481–488. MR**1431136**, DOI 10.1007/s002220050128 - J. G. Thompson,
*Remarks on finite groups*, Proceedings of the 5th School of Algebra (Rio de Janeiro, 1978) Soc. Brasil. Mat., Rio de Janeiro, 1978, pp. 75–77. MR**572056** - George Lusztig,
*Introduction to quantum groups*, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1227098** - Brian Parshall and Jian Pan Wang,
*Quantum linear groups*, Mem. Amer. Math. Soc.**89**(1991), no. 439, vi+157. MR**1048073**, DOI 10.1090/memo/0439 - Leonard L. Scott,
*Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 271–281. MR**933417**

## Additional Information

**Jie Du**- Affiliation: Schools of Mathematics, University of New South Wales, Sydney, 2052, Australia
- MR Author ID: 242577
- Email: jied@maths.unsw.edu.au
**Hebing Rui**- Affiliation: Department of Mathematics, University of Shanghai for Science & Technology, Shanghai, 200093, People’s Republic of China
- Email: hbruik@online.sh.cn
- Received by editor(s): September 13, 1996
- Additional Notes: Both authors gratefully acknowledge support received from Australian Research Council under Large ARC Grant A69530243. The second author is partially supported by the National Natural Science Foundation, grant no. 19501016, in P.R. China. He wishes to thank the University of New South Wales for its hospitality during his visit.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 3207-3235 - MSC (1991): Primary 16G99, 17B10; Secondary 20C20, 20C30
- DOI: https://doi.org/10.1090/S0002-9947-98-02305-8
- MathSciNet review: 1603902