Supports of derivations, free factorizations, and ranks of fixed subgroups in free groups
HTML articles powered by AMS MathViewer
- by George M. Bergman
- Trans. Amer. Math. Soc. 351 (1999), 1531-1550
- DOI: https://doi.org/10.1090/S0002-9947-99-02087-5
- PDF | Request permission
Abstract:
For $F$ a free group of finite rank, it is shown that the fixed subgroup of any set $B$ of endomorphisms of $F$ has rank $\leq \operatorname {rank} (F)$, generalizing a recent result of Dicks and Ventura. The proof involves the combinatorics of derivations of groups. Some related questions are examined.References
- George M. Bergman, Embedding rings in completed graded rings. I. Triangular embeddings, J. Algebra 84 (1983), no. 1, 14–24. MR 716768, DOI 10.1016/0021-8693(83)90065-0
- M. Cohen, Wolfgang Metzler, and A. Zimmermann, What does a basis of $F(a,\,b)$ look like?, Math. Ann. 257 (1981), no. 4, 435–445. MR 639577, DOI 10.1007/BF01465865
- P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, Cambridge, 1995. Theory of general division rings. MR 1349108, DOI 10.1017/CBO9781139087193
- D. J. Collins and E. C. Turner, All automorphisms of free groups with maximal rank fixed subgroups, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 615–630. MR 1362943, DOI 10.1017/S0305004100074466
- Warren Dicks, On equalizers of sections, J. Alg. (to appear).
- Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics, vol. 17, Cambridge University Press, Cambridge, 1989. MR 1001965
- Warren Dicks and Enric Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemporary Mathematics, vol. 195, American Mathematical Society, Providence, RI, 1996. MR 1385923, DOI 10.1090/conm/195
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Richard Z. Goldstein and Edward C. Turner, Fixed subgroups of homomorphisms of free groups, Bull. London Math. Soc. 18 (1986), no. 5, 468–470. MR 847985, DOI 10.1112/blms/18.5.468
- W. Imrich and E. C. Turner, Endomorphisms of free groups and their fixed points, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 3, 421–422. MR 985677, DOI 10.1017/S0305004100077781
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Jean-Pierre Serre, Arbres, amalgames, $\textrm {SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass. MR 0476875
- John R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), no. 3, 551–565. MR 695906, DOI 10.1007/BF02095993
- Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610. MR 240177, DOI 10.1016/0021-8693(69)90030-1
- Edward C. Turner, Test words for automorphisms of free groups, Bull. London Math. Soc. 28 (1996), no. 3, 255–263. MR 1374403, DOI 10.1112/blms/28.3.255
- U. U. Umirbaev, On the ranks of elements of free groups, Fundamental’naya i Prikladnaya Matematika 2 (1996), 313-315 (Russian).
Bibliographic Information
- George M. Bergman
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720-3840
- Email: gbergman@math.berkeley.edu
- Received by editor(s): April 5, 1996
- Received by editor(s) in revised form: April 8, 1997
- Additional Notes: This work was done while the author was partly supported by NSF contract DMS 93-03379.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1531-1550
- MSC (1991): Primary 20E05, 20E06, 20J05; Secondary 05E20, 20C07, 20E08
- DOI: https://doi.org/10.1090/S0002-9947-99-02087-5
- MathSciNet review: 1458296