Block representation type of reduced enveloping algebras
HTML articles powered by AMS MathViewer
- by Iain Gordon and Alexander Premet
- Trans. Amer. Math. Soc. 354 (2002), 1549-1581
- DOI: https://doi.org/10.1090/S0002-9947-01-02826-4
- Published electronically: December 7, 2001
- PDF | Request permission
Abstract:
Let $K$ be an algebraically closed field of characteristic $p$, $G$ a connected, reductive $K$-group, $\mathfrak {g}=\text {Lie}(G)$, $\chi \in \mathfrak {g}^*$ and $U_\chi (\mathfrak {g})$ the reduced enveloping algebra of $\mathfrak {g}$ associated with $\chi$. Assume that $G^{(1)}$ is simply-connected, $p$ is good for $G$ and $\mathfrak {g}$ has a non-degenerate $G$-invariant bilinear form. All blocks of $U_\chi (\mathfrak {g})$ having finite and tame representation type are determined.References
- D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- K.A. Brown and I. Gordon. The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras. To appear in Math. Zeit.
- William Crawley-Boevey, Tameness of biserial algebras, Arch. Math. (Basel) 65 (1995), no. 5, 399–407. MR 1354686, DOI 10.1007/BF01198070
- Yu. A. Drozd, Representations of Lie algebras ${\mathfrak {s}}{\mathfrak {l}}(2)$, Vīsnik Kiïv. Unīv. Ser. Mat. Mekh. 25 (1983), 70–77 (Ukrainian, with Russian summary). MR 746766
- Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107, DOI 10.1007/BFb0084003
- Rolf Farnsteiner, Periodicity and representation type of modular Lie algebras, J. Reine Angew. Math. 464 (1995), 47–65. MR 1340334, DOI 10.1515/crll.1995.464.47
- G. Fischer. Dastellungtheorie des ersten Frobeniuskerns der $SL_2$. PhD thesis, Universität Bielefeld, 1982.
- Eric M. Friedlander and Brian J. Parshall, Geometry of $p$-unipotent Lie algebras, J. Algebra 109 (1987), no. 1, 25–45. MR 898334, DOI 10.1016/0021-8693(87)90161-X
- Eric M. Friedlander and Brian J. Parshall, Rational actions associated to the adjoint representation, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 2, 215–226. MR 911755, DOI 10.24033/asens.1529
- Eric M. Friedlander and Brian J. Parshall, Modular representation theory of Lie algebras, Amer. J. Math. 110 (1988), no. 6, 1055–1093. MR 970120, DOI 10.2307/2374686
- Eric M. Friedlander and Brian J. Parshall, Deformations of Lie algebra representations, Amer. J. Math. 112 (1990), no. 3, 375–395. MR 1055649, DOI 10.2307/2374747
- Peter Gabriel, Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974, pp. Paper No. 10, 23. MR 0376769
- Christof Geiss, On degenerations of tame and wild algebras, Arch. Math. (Basel) 64 (1995), no. 1, 11–16. MR 1305654, DOI 10.1007/BF01193544
- I. M. Gel′fand and V. A. Ponomarev, Indecomposable representations of the Lorentz group, Uspehi Mat. Nauk 23 (1968), no. 2 (140), 3–60 (Russian). MR 0229751
- I. Gordon. Representations of semisimple Lie algebras in positive characteristic and quantum groups at roots of unity. SFB preprint 00-007, Universität Bielefeld.
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- Lillian E. Peters Hupert, Homological characteristics of rings having Jacobson radical squared zero, J. Algebra 69 (1981), no. 1, 32–42. MR 613855, DOI 10.1016/0021-8693(81)90125-3
- J. C. Jantzen, Kohomologie von $p$-Lie-Algebren und nilpotente Elemente, Abh. Math. Sem. Univ. Hamburg 56 (1986), 191–219 (German). MR 882415, DOI 10.1007/BF02941516
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- J. C. Jantzen, Support varieties of Weyl modules, Bull. London Math. Soc. 19 (1987), no. 3, 238–244. MR 879510, DOI 10.1112/blms/19.3.238
- Jens Carsten Jantzen, Representations of Lie algebras in prime characteristic, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 185–235. Notes by Iain Gordon. MR 1649627
- Jens Carsten Jantzen, Modular representations of reductive Lie algebras, J. Pure Appl. Algebra 152 (2000), no. 1-3, 133–185. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). MR 1783993, DOI 10.1016/S0022-4049(99)00142-5
- Jens Carsten Jantzen, Subregular nilpotent representations of $\mathfrak {sl}_n$ and $\mathfrak {so}_{2n+1}$, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 2, 223–257. MR 1670225, DOI 10.1017/S0305004198003296
- Hanspeter Kraft, Geometric methods in representation theory, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 944, Springer, Berlin-New York, 1982, pp. 180–258. MR 672117
- M. Meyer-ter-Vehn. Köcher von reduzierten Einhüllenden. Diplomarbeit, Universität Freiburg, 2000.
- A. A. Mil′ner, The maximal degree of irreducible representations of a Lie algebra over a field of positive characteristic, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 67–68 (Russian). MR 575217
- D. P. Zhelobenko, Universal Verma modules and $W$-resolvents over Kac-Moody algebras, Teoret. Mat. Fiz. 122 (2000), no. 3, 334–356 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 122 (2000), no. 3, 278–297. MR 1774020, DOI 10.1007/BF02551242
- D.K. Nakano, B.J. Parshall and D.C.Vella. Support varieties for algebraic groups. Preprint, 2000.
- Daniel K. Nakano and R. David Pollack, Blocks of finite type in reduced enveloping algebras for classical Lie algebras, J. London Math. Soc. (2) 61 (2000), no. 2, 374–394. MR 1760690, DOI 10.1112/S0024610799008406
- Richard D. Pollack, Restricted Lie algebras of bounded type, Bull. Amer. Math. Soc. 74 (1968), 326–331. MR 219582, DOI 10.1090/S0002-9904-1968-11943-3
- A. A. Premet, The Green ring of a simple three-dimensional Lie $p$-algebra, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1991), 56–67 (Russian); English transl., Soviet Math. (Iz. VUZ) 35 (1991), no. 10, 51–60. MR 1179217
- Alexander Premet, An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics, Trans. Amer. Math. Soc. 347 (1995), no. 8, 2961–2988. MR 1290730, DOI 10.1090/S0002-9947-1995-1290730-7
- Alexander Premet, Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture, Invent. Math. 121 (1995), no. 1, 79–117. MR 1345285, DOI 10.1007/BF01884291
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- Alexander Premet, Complexity of Lie algebra representations and nilpotent elements of the stabilizers of linear forms, Math. Z. 228 (1998), no. 2, 255–282. MR 1630551, DOI 10.1007/PL00004612
- Jeremy Rickard, The representation type of self-injective algebras, Bull. London Math. Soc. 22 (1990), no. 6, 540–546. MR 1099003, DOI 10.1112/blms/22.6.540
- Claus Michael Ringel, The representation type of local algebras, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974, pp. Paper No. 22, 24. MR 0382356
- Claus Michael Ringel, The indecomposable representations of the dihedral $2$-groups, Math. Ann. 214 (1975), 19–34. MR 364426, DOI 10.1007/BF01428252
- A. N. Rudakov, Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1982), 45–49, 121 (Russian, with English summary). MR 685263
- John R. Schue, Symmetry for the enveloping algebra of a restricted Lie algebra, Proc. Amer. Math. Soc. 16 (1965), 1123–1124. MR 185045, DOI 10.1090/S0002-9939-1965-0185045-0
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- T. A. Springer, Some arithmetical results on semi-simple Lie algebras, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 115–141. MR 206171, DOI 10.1007/BF02684358
- B. Ju. Veĭsfeĭler and V. G. Kac, The irreducible representations of Lie $p$-algebras, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 28–36 (Russian). MR 0285575
Bibliographic Information
- Iain Gordon
- Affiliation: Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland
- Email: ig@maths.gla.ac.uk
- Alexander Premet
- Affiliation: Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, England
- MR Author ID: 190461
- Email: sashap@ma.man.ac.uk
- Received by editor(s): July 24, 2000
- Received by editor(s) in revised form: January 2, 2001
- Published electronically: December 7, 2001
- Additional Notes: The authors would like to thank the London Mathematical Society for supporting a visit of the first author to Manchester through a travel grant scheme. Further financial support for the first author was provided by TMR grant ERB FMRX-CT97-0100 at the University of Bielefeld.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 1549-1581
- MSC (2000): Primary 20G05; Secondary 17B20
- DOI: https://doi.org/10.1090/S0002-9947-01-02826-4
- MathSciNet review: 1873018