Monomial bases for -Schur algebras
Authors:
Jie Du and Brian Parshall
Journal:
Trans. Amer. Math. Soc. 355 (2003), 1593-1620
MSC (2000):
Primary 17B37, 20C08, 20G05
DOI:
https://doi.org/10.1090/S0002-9947-02-03188-4
Published electronically:
November 14, 2002
MathSciNet review:
1946407
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Using the Beilinson-Lusztig-MacPherson construction of the quantized enveloping algebra of and its associated monomial basis, we investigate
-Schur algebras
as ``little quantum groups". We give a presentation for
and obtain a new basis for the integral
-Schur algebra
, which consists of certain monomials in the original generators. Finally, when
, we interpret the Hecke algebra part of the monomial basis for
in terms of Kazhdan-Lusztig basis elements.
- 1.
A. A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum deformation of
, Duke Math. J. 61 (1990), 655-677. MR 91m:17012
- 2. K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), 245-287. MR 98e:16012
- 3. V. Chari and N. Xi, Monomial bases of quantized enveloping algebras, in ``Recent developments in quantum affine algebras and related topics'' (Raleigh, NC, 1998), 69-81, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999. MR 2001c:17023
- 4. B. Deng and J. Du, On bases of quantized enveloping algebras, to appear.
- 5.
R. Dipper and G. James, The
-Schur algebra, Proc. London Math. Soc. 59 (1989), 23-50. MR 90g:16026
- 6.
R. Dipper and G. James,
-tensor space and
-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), 251-282. MR 91m:20061
- 7.
S. Doty and A. Giaquinto, Presenting quantum Schur algebras as quotients of the quantized universal enveloping algebras of
, preprint.
- 8. S. Doty and A. Giaquinto, Presenting Schur algebras, International Mathematics Research Notices IMRN 2002:36 (2002) 1907-1944.
- 9. J. Du, A note on the quantized Weyl reciprocity at roots of unity, Alg. Colloq. 2 (1995), 363-372. MR 96m:17024
- 10.
J. Du,
-Schur algebras, asymptotic forms, and quantum
, J. Algebra 177 (1995), 385-408. MR 96k:17021
- 11. J. Du, B. Parshall and L. Scott, Quantum Weyl reciprocity and tilting modules, Comm. Math. Phys. 195 (1998), 321-352. MR 99k:17026
- 12.
J. Du and B. Parshall, Linear quivers and the geometric setting for quantum
, Indag. Math., in press.
- 13. J. Du and H. Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc. 350 (1998), 3207-3235. MR 99b:16027
- 14.
R. Green,
-Schur algebras as quotients of quantized enveloping algebras, J. Algebra 185 (1996), 660-687. MR 97k:17016
- 15. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 81j:20066
- 16.
M. Jimbo, A
-analogue of
, Hecke algebras, and the Yang-Baxter equation, Lett. Math. Phy. 11 (1986), 247-252. MR 87k:17011
- 17. G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989) 59-77. MR 90a:16008
- 18. G. Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257-296. MR 91e:17009
- 19. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498. MR 90m:17023
- 20.
G. Lusztig, Aperiodicity in quantum affine
, Asian J. Math. 3 (1999), 147-177. MR 2000i:17027
- 21.
G. Lusztig, Transfer maps for quantum affine
, In Representations and quantizations (Shanghai, 1998), China High. Educ. Press, Beijing (2000), 341-356. MR 2002f:17026
- 22.
O. Schiffmann and E. Vasserot, Geometric construction of the global base of the quantum modified algebra of
, Transf. Groups 5 (2000), 351-360. MR 2001k:17029
- 23.
M. Takeuchi, Some topics on
, J. Algebra 147 (1992), 379-410. MR 93b:17055
- 24.
H. Wenzl, Hecke algebra of type
and subfactors, Invent. Math. 92 (1988), 349-383. MR 90b:46118
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 17B37, 20C08, 20G05
Retrieve articles in all journals with MSC (2000): 17B37, 20C08, 20G05
Additional Information
Jie Du
Affiliation:
School of Mathematics, University of New South Wales, Sydney 2052, Australia
Email:
j.du@unsw.edu.au
Brian Parshall
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904-4137
Email:
bjp8w@virginia.edu
DOI:
https://doi.org/10.1090/S0002-9947-02-03188-4
Received by editor(s):
October 1, 2001
Received by editor(s) in revised form:
July 1, 2002
Published electronically:
November 14, 2002
Additional Notes:
Supported partially by ARC and NSF
Article copyright:
© Copyright 2002
American Mathematical Society