Twisted sums with $C(K)$ spaces
HTML articles powered by AMS MathViewer
- by F. Cabello Sánchez, J. M. F. Castillo, N. J. Kalton and D. T. Yost
- Trans. Amer. Math. Soc. 355 (2003), 4523-4541
- DOI: https://doi.org/10.1090/S0002-9947-03-03152-0
- Published electronically: July 2, 2003
- PDF | Request permission
Abstract:
If $X$ is a separable Banach space, we consider the existence of non-trivial twisted sums $0\to C(K)\to Y\to X\to 0$, where $K=[0,1]$ or $\omega ^{\omega }.$ For the case $K=[0,1]$ we show that there exists a twisted sum whose quotient map is strictly singular if and only if $X$ contains no copy of $\ell _1$. If $K=\omega ^{\omega }$ we prove an analogue of a theorem of Johnson and Zippin (for $K=[0,1]$) by showing that all such twisted sums are trivial if $X$ is the dual of a space with summable Szlenk index (e.g., $X$ could be Tsirelson’s space); a converse is established under the assumption that $X$ has an unconditional finite-dimensional decomposition. We also give conditions for the existence of a twisted sum with $C(\omega ^{\omega })$ with strictly singular quotient map.References
- Israel Aharoni and Joram Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978), no. 2, 281–283. MR 482074, DOI 10.1090/S0002-9904-1978-14475-9
- D. Amir, Continuous functions’ spaces with the separable projection property, Bull. Res. Council Israel Sect. F 10F (1962), 163–164 (1962). MR 150570
- D. Amir, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964), 396–402. MR 165350, DOI 10.1090/S0002-9939-1964-0165350-3
- John Warren Baker, Projection constants for $C(S)$ spaces with the separable projection property, Proc. Amer. Math. Soc. 41 (1973), 201–204. MR 320707, DOI 10.1090/S0002-9939-1973-0320707-8
- Y. Benyamini and J. Lindenstrauss, A predual of $l_{1}$ which is not isomorphic to a $C(K)$ space, Israel J. Math. 13 (1972), 246–254 (1973). MR 331013, DOI 10.1007/BF02762798
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- Aleksander Błaszczyk and Andrzej Szymański, Concerning Parovičenko’s theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 7-8, 311–314 (1981) (English, with Russian summary). MR 628044
- J. Bourgain and F. Delbaen, A class of special ${\cal L}_{\infty }$ spaces, Acta Math. 145 (1980), no. 3-4, 155–176. MR 590288, DOI 10.1007/BF02414188
- Jean Bourgain and Gilles Pisier, A construction of ${\scr L}_{\infty }$-spaces and related Banach spaces, Bol. Soc. Brasil. Mat. 14 (1983), no. 2, 109–123. MR 756904, DOI 10.1007/BF02584862
- Y. A. Brudnyi and N. J. Kalton, Polynomial approximation on convex subsets of $\textbf {R}^n$, Constr. Approx. 16 (2000), no. 2, 161–199. MR 1735240, DOI 10.1007/s003659910008
- Félix Cabello Sánchez and Jesús M. F. Castillo, Duality and twisted sums of Banach spaces, J. Funct. Anal. 175 (2000), no. 1, 1–16. MR 1774849, DOI 10.1006/jfan.2000.3598
- F. Cabello Sánchez and J. M. F. Castillo, Uniform boundedness and twisted sums of Banach spaces, Houston J. Math., to appear.
- Félix Cabello Sánchez, Jesús M. F. Castillo, and David Yost, Sobczyk’s theorems from A to B, Extracta Math. 15 (2000), no. 2, 391–420. III Congress on Banach Spaces (Jarandilla de la Vera, 1998). MR 1823898
- Peter G. Casazza and Thaddeus J. Shura, Tsirel′son’s space, Lecture Notes in Mathematics, vol. 1363, Springer-Verlag, Berlin, 1989. With an appendix by J. Baker, O. Slotterbeck and R. Aron. MR 981801, DOI 10.1007/BFb0085267
- Jesús M. F. Castillo, Banach spaces, à la recherche du temps perdu, Extracta Math. 15 (2000), no. 2, 373–390. III Congress on Banach Spaces (Jarandilla de la Vera, 1998). MR 1823897
- Jesús M. F. Castillo and Manuel González, Three-space problems in Banach space theory, Lecture Notes in Mathematics, vol. 1667, Springer-Verlag, Berlin, 1997. MR 1482801, DOI 10.1007/BFb0112511
- Jesús M. F. Castillo, Manuel González, Anatolij M. Plichko, and David Yost, Twisted properties of Banach spaces, Math. Scand. 89 (2001), no. 2, 217–244. MR 1868175, DOI 10.7146/math.scand.a-14339
- H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1–15. MR 132375, DOI 10.1090/S0002-9947-1961-0132375-5
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Per Enflo, Joram Lindenstrauss, and Gilles Pisier, On the “three space problem”, Math. Scand. 36 (1975), no. 2, 199–210. MR 383047, DOI 10.7146/math.scand.a-11571
- Ciprian Foiaş and Ivan Singer, On bases in $C([O,\,1])$ and $L^{1}\,([0,\,1])$, Rev. Roumaine Math. Pures Appl. 10 (1965), 931–960. MR 206691
- G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. 353 (2001) 3895–3918.
- W. B. Johnson and H. P. Rosenthal, On $\omega ^{\ast }$-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. MR 310598, DOI 10.4064/sm-43-1-77-92
- W. B. Johnson and M. Zippin, Separable $L_{1}$ preduals are quotients of $C(\Delta )$, Israel J. Math. 16 (1973), 198–202. MR 338745, DOI 10.1007/BF02757870
- W. B. Johnson and M. Zippin, Extension of operators from weak$^*$-closed subspaces of $l_1$ into $C(K)$ spaces, Studia Math. 117 (1995), no. 1, 43–55. MR 1367692
- M. I. Kadets and B. Ya. Levin, On a solution of a problem of Banach concerning topological equivalence of spaces of continuous functions (Russian), Trudy Sem. Funct. Anal. Voronezh. 3–4 (1960) 20–25.
- N. J. Kalton, On subspaces of $c_0$ and extension of operators into $C(K)$-spaces, Quart. J. Math (Oxford) 52 (2001), 313–328.
- N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30. MR 542869, DOI 10.1090/S0002-9947-1979-0542869-X
- N. J. Kalton and A. Pełczyński, Kernels of surjections from $\scr L_1$-spaces with an application to Sidon sets, Math. Ann. 309 (1997), no. 1, 135–158. MR 1467651, DOI 10.1007/s002080050107
- H. Knaust, E. Odell, and Th. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, Positivity 3 (1999), no. 2, 173–199. MR 1702641, DOI 10.1023/A:1009786603119
- S. Kwapień, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583–595. MR 341039, DOI 10.4064/sm-44-6-583-595
- S. Kwapień, Isomorphic characterizations of Hilbert spaces by orthogonal series with vector valued coefficients, Séminaire Maurey-Schwartz (année 1972–1973), Espaces $L^{p}$ et applications radonifiantes, Centre de Math., École Polytech., Paris, 1973, pp. Exp. No. 8, 7. MR 0410345
- J. Lindenstrauss and H. P. Rosenthal, Automorphisms in $c_{0}$, $l_{1}$ and $m$, Israel J. Math. 7 (1969), 227–239. MR 250032, DOI 10.1007/BF02787616
- J. Lindenstrauss and H. P. Rosenthal, The ${\cal L}_{p}$ spaces, Israel J. Math. 7 (1969), 325–349. MR 270119, DOI 10.1007/BF02788865
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- Bernard Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^{p}$, Astérisque, No. 11, Société Mathématique de France, Paris, 1974 (French). With an English summary. MR 0344931
- Bernard Maurey, Un théorème de prolongement, C. R. Acad. Sci. Paris Sér. A 279 (1974), 329–332 (French). MR 355539
- A. Pełczyński, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in $C(S)$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31–36. MR 177300
- A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968), 92. MR 227751
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- Haskell P. Rosenthal, Some applications of $p$-summing operators to Banach space theory, Studia Math. 58 (1976), no. 1, 21–43. MR 430749, DOI 10.4064/sm-58-1-21-43
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- B. S. Cirel′son, It is impossible to imbed $\ell _{p}$ or $c_{0}$ into an arbitrary Banach space, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 57–60 (Russian). MR 0350378
Bibliographic Information
- F. Cabello Sánchez
- Affiliation: Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071 Badajoz, Spain
- Email: fcabello@unex.es
- J. M. F. Castillo
- Affiliation: Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071 Badajoz, Spain
- MR Author ID: 247518
- ORCID: 0000-0003-3032-966X
- Email: castillo@unex.es
- N. J. Kalton
- Affiliation: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211
- Email: nigel@math.missouri.edu
- D. T. Yost
- Affiliation: Department of Mathematics, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Email: dthoyost@ksu.edu.sa
- Received by editor(s): June 21, 2001
- Received by editor(s) in revised form: June 5, 2002
- Published electronically: July 2, 2003
- Additional Notes: The research of the first two authors was supported in part by the DGICYT project BFM 2001-0387
The third author was supported by NSF grant DMS-9870027.
The fourth author was supported substantially by the Junta de Extremadura, and for a few days by Research Centre Project Number Math/1420/25 from his present institution - © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 4523-4541
- MSC (2000): Primary 46B03, 46B20
- DOI: https://doi.org/10.1090/S0002-9947-03-03152-0
- MathSciNet review: 1990760