Uniqueness of varieties of minimal degree containing a given scheme
HTML articles powered by AMS MathViewer
- by M. Casanellas
- Trans. Amer. Math. Soc. 356 (2004), 1875-1888
- DOI: https://doi.org/10.1090/S0002-9947-03-03421-4
- Published electronically: October 8, 2003
- PDF | Request permission
Abstract:
We prove that if $X \subset \mathbb {P}^N$ has dimension $k$ and it is $r$-Buchsbaum with $r>\max {(\operatorname {codim}{X}-k,0)}$, then $X$ is contained in at most one variety of minimal degree and dimension $k+1$.References
- James N. Brawner, Tetragonal curves, scrolls, and $K3$ surfaces, Trans. Amer. Math. Soc. 349 (1997), no. 8, 3075–3091. MR 1401515, DOI 10.1090/S0002-9947-97-01811-4
- Marta Casanellas, Characterization of non-connected Buchsbaum curves in $\mathbf P^n$, Matematiche (Catania) 54 (1999), no. 1, 187–195 (2000). MR 1776338
- —, Teoria de liaison en codimensió arbitrària, Ph.D. thesis, Universitat de Barcelona, 2002.
- M. Casanellas and R. M. Miró-Roig, Gorenstein liaison and special linear configurations, Illinois J. Math. 46 (2002), no. 1, 129–143. MR 1936079
- David Eisenbud and Joe Harris, On varieties of minimal degree (a centennial account), Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 3–13. MR 927946, DOI 10.1090/pspum/046.1/927946
- Joe Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 35–68. MR 616900
- Le Tuan Hoa, Rosa M. Miró-Roig, and Wolfgang Vogel, On numerical invariants of locally Cohen-Macaulay schemes in $\textbf {P}^n$, Hiroshima Math. J. 24 (1994), no. 2, 299–316. MR 1284377
- Jan O. Kleppe, Juan C. Migliore, Rosa Miró-Roig, Uwe Nagel, and Chris Peterson, Gorenstein liaison, complete intersection liaison invariants and unobstructedness, Mem. Amer. Math. Soc. 154 (2001), no. 732, viii+116. MR 1848976, DOI 10.1090/memo/0732
- Joshua Lesperance, Gorenstein liaison of some curves in $\Bbb P^4$, Collect. Math. 52 (2001), no. 3, 219–230. MR 1885220
- Juan Migliore, Geometric invariants for liaison of space curves, J. Algebra 99 (1986), no. 2, 548–572. MR 837562, DOI 10.1016/0021-8693(86)90045-1
- Juan C. Migliore, Liaison of a union of skew lines in $\textbf {P}^4$, Pacific J. Math. 130 (1987), no. 1, 153–170. MR 910658
- Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1712469, DOI 10.1007/978-1-4612-1794-7
- J. Migliore and U. Nagel, Liaison and related topics, Rend. Sem. Mat. Univ. Pol. Torino 59 (2001), 59–126.
- Chikashi Miyazaki, Sharp bounds on Castelnuovo-Mumford regularity, Trans. Amer. Math. Soc. 352 (2000), no. 4, 1675–1686. MR 1621769, DOI 10.1090/S0002-9947-99-02380-6
Bibliographic Information
- M. Casanellas
- Affiliation: Departament d’Algebra i Geometria, Facultat de Matematiques, Universitat de Barcelona, Gran Via 585, 08007-Barcelona, Spain
- Email: casanell@mat.ub.es
- Received by editor(s): August 5, 2002
- Published electronically: October 8, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1875-1888
- MSC (2000): Primary 14M06, 14M12, 14M05
- DOI: https://doi.org/10.1090/S0002-9947-03-03421-4
- MathSciNet review: 2031044