A converse to Dye's theorem
Author:
Greg Hjorth
Journal:
Trans. Amer. Math. Soc. 357 (2005), 3083-3103
MSC (2000):
Primary 03E15, 28D15, 37A15
DOI:
https://doi.org/10.1090/S0002-9947-04-03672-4
Published electronically:
July 22, 2004
MathSciNet review:
2135736
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Every non-amenable countable group induces orbit inequivalent ergodic equivalence relations on standard Borel probability spaces. Not every free, ergodic, measure preserving action of on a standard Borel probability space is orbit equivalent to an action of a countable group on an inverse limit of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation which is not universal for treeable in the
ordering.
- 1. Scot Adams, Indecomposability of treed equivalence relations, Israel J. Math. 64 (1988), no. 3, 362–380 (1989). MR 995576, https://doi.org/10.1007/BF02882427
- 2. S. I. Bezuglyĭ and V. Ya. Golodets, Hyperfinite and 𝐼𝐼₁ actions for nonamenable groups, J. Functional Analysis 40 (1981), no. 1, 30–44. MR 607589, https://doi.org/10.1016/0022-1236(81)90070-7
- 3. A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, https://doi.org/10.1017/s014338570000136x
- 4. Klaus Schmidt, Asymptotically invariant sequences and an action of 𝑆𝐿(2,𝑍) on the 2-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, https://doi.org/10.1007/BF02760961
- 5. H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159. MR 131516, https://doi.org/10.2307/2372852
- 6. H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551–576. MR 158048, https://doi.org/10.2307/2373108
- 7.
D. Gaboriau, S. Popa, An uncountable family of non-orbit equivalent actions of
, preprint, Ecole Normale Superieure, Lyon, UMPA, 2003.
- 8. Sergey L. Gefter and Valentin Ya. Golodets, Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 821–847 (1989). MR 1000122, https://doi.org/10.2977/prims/1195173929
- 9. Pierre de la Harpe and Alain Valette, La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- 10. Vaughan F. R. Jones and Klaus Schmidt, Asymptotically invariant sequences and approximate finiteness, Amer. J. Math. 109 (1987), no. 1, 91–114. MR 878200, https://doi.org/10.2307/2374553
- 11. Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
- 12. A.S. Kechris, Notes on unitary representations and modular actions, preprint, Caltech, 2003.
- 13. S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Log. 2 (2002), no. 1, 1–80. MR 1900547, https://doi.org/10.1142/S0219061302000138
- 14. Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753, https://doi.org/10.1090/S0273-0979-1980-14702-3
- 15. S. Popa, Correspondences, typed notes, INCREST, preprint, 1986.
- 16.
S. Popa, On a class of type II
factors with Betti number invariants, typed notes, UCLA, 2002.
- 17. Klaus Schmidt, Asymptotically invariant sequences and an action of 𝑆𝐿(2,𝑍) on the 2-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, https://doi.org/10.1007/BF02760961
- 18. Klaus Schmidt, Some solved and unsolved problems concerning orbit equivalence of countable group actions, Proceedings of the conference on ergodic theory and related topics, II (Georgenthal, 1986) Teubner-Texte Math., vol. 94, Teubner, Leipzig, 1987, pp. 171–184. MR 931144
- 19. Theodore A. Slaman and John R. Steel, Definable functions on degrees, Cabal Seminar 81–85, Lecture Notes in Math., vol. 1333, Springer, Berlin, 1988, pp. 37–55. MR 960895, https://doi.org/10.1007/BFb0084969
- 20. Elmar Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111–138 (German). MR 160118, https://doi.org/10.1007/BF01361180
- 21. A. Zuk, Property (T) and Kazhdan constants for discrete groups, Geometric and Functional Analysis, vol. 13(2003), pp. 643-670.
- 22. Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 03E15, 28D15, 37A15
Retrieve articles in all journals with MSC (2000): 03E15, 28D15, 37A15
Additional Information
Greg Hjorth
Affiliation:
Department of Mathematics, University of California—Los Angeles, Los Angeles, California 90095-1555
Email:
greg@math.ucla.edu
DOI:
https://doi.org/10.1090/S0002-9947-04-03672-4
Keywords:
Ergodic theory,
treeable equivalence relations,
non-amenable groups,
property $T$ groups,
free groups,
Borel reducibility
Received by editor(s):
September 8, 2003
Published electronically:
July 22, 2004
Additional Notes:
The author was partially supported by NSF grant DMS 01-40503
Article copyright:
© Copyright 2004
American Mathematical Society