Compatible valuations and generalized Milnor $K$-theory
Author:
Ido Efrat
Journal:
Trans. Amer. Math. Soc. 359 (2007), 4695-4709
MSC (2000):
Primary 19F99; Secondary 12J15, 19C99, 12J99
DOI:
https://doi.org/10.1090/S0002-9947-07-04132-3
Published electronically:
April 24, 2007
MathSciNet review:
2320647
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Given a field $F$ and a subgroup $S$ of $F^{\times }$ there is a minimal group $S\leq H_{S}\leq F^{\times }$ for which there exists an $S$-compatible valuation whose units are contained in $H_{S}$. Assuming that $S$ has finite index in $F^{\times }$ and contains $(F^{\times })^{p}$ for $p$ prime, we describe $H_{S}$ in computable $K$-theoretic terms.
- Jón Kr. Arason, Richard Elman, and Bill Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110 (1987), no. 2, 449–467. MR 910395, DOI https://doi.org/10.1016/0021-8693%2887%2990057-3
- H. Bass and J. Tate, The Milnor ring of a global field, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) Springer, Berlin, 1973, pp. 349–446. Lecture Notes in Math., Vol. 342. MR 0442061, DOI https://doi.org/10.1007/BFb0073733
- Eberhard Becker and Eberhard Köpping, Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Univ. Hamburg 46 (1977), 143–177 (German). MR 506028, DOI https://doi.org/10.1007/BF02993018
- Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1972 edition. MR 979760
- Ido Efrat, Construction of valuations from $K$-theory, Math. Res. Lett. 6 (1999), no. 3-4, 335–343. MR 1713134, DOI https://doi.org/10.4310/MRL.1999.v6.n3.a7
- Ido Efrat, The local correspondence over absolute fields: an algebraic approach, Internat. Math. Res. Notices 23 (2000), 1213–1223. MR 1809368, DOI https://doi.org/10.1155/S107379280000060X
- Ido Efrat, Demuškin fields with valuations, Math. Z. 243 (2003), no. 2, 333–353. MR 1961869, DOI https://doi.org/10.1007/s00209-002-0471-1
- Ido Efrat, A generalization of Marshall’s equivalence relation, Trans. Amer. Math. Soc. 358 (2006), no. 6, 2561–2577. MR 2204044, DOI https://doi.org/10.1090/S0002-9947-05-03776-1
- Ido Efrat, Quotients of Milnor $K$-rings, orderings, and valuations, Pacific J. Math. 226 (2006), no. 2, 259–275. MR 2247864, DOI https://doi.org/10.2140/pjm.2006.226.259
- Ido Efrat and Ivan Fesenko, Fields Galois-equivalent to a local field of positive characteristic, Math. Res. Lett. 6 (1999), no. 3-4, 345–356. MR 1713135, DOI https://doi.org/10.4310/MRL.1999.v6.n3.a8
- Otto Endler, Valuation theory, Universitext, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971). MR 0357379
- H. Hahn, Über die nichtarchimedischen Grössensysteme, Sitz.-Ber. d. Wiener Akad., Math.-Nat. Klasse, Abt. IIa 116 (1907), 601–653.
- Yoon Sung Hwang and Bill Jacob, Brauer group analogues of results relating the Witt ring to valuations and Galois theory, Canad. J. Math. 47 (1995), no. 3, 527–543. MR 1346152, DOI https://doi.org/10.4153/CJM-1995-029-4
- Bill Jacob, On the structure of Pythagorean fields, J. Algebra 68 (1981), no. 2, 247–267. MR 608534, DOI https://doi.org/10.1016/0021-8693%2881%2990263-5
- Bill Jacob and Adrian R. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc. 293 (1986), no. 2, 693–721. MR 816320, DOI https://doi.org/10.1090/S0002-9947-1986-0816320-X
- Bruno Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque 245 (1997), Exp. No. 834, 5, 379–418 (French, with French summary). Séminaire Bourbaki, Vol. 1996/97. MR 1627119
- Jochen Koenigsmann, From $p$-rigid elements to valuations (with a Galois-characterization of $p$-adic fields), J. Reine Angew. Math. 465 (1995), 165–182. With an appendix by Florian Pop. MR 1344135, DOI https://doi.org/10.1515/crll.1995.465.165
- W. Krull, Allgemeine Bewertungstheorie, J. reine angew. Math. 167 (1931), 160–196.
- Tsit Yuen Lam, Orderings, valuations and quadratic forms, CBMS Regional Conference Series in Mathematics, vol. 52, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR 714331
- Serge Lang, Algebra, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR 783636
- A.S. Merkurjev and A.A. Suslin, $K$-cohomology of Brauer-Severi varieties and the norm residue homomorphism, Math. USSR Izv. 21 (1983), 307–340; English translation (Russian).
- John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844, DOI https://doi.org/10.1007/BF01425486
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Paulo Ribenboim, Théorie des valuations, Séminaire de Mathématiques Supérieures, No. 9 (Été, vol. 1964, Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). Deuxième édition multigraphiée. MR 0249425
- K. Szymiczek, Quadratic forms over fields, Dissertationes Math. (Rozprawy Mat.) 152 (1977), 63. MR 450199
- Adrian R. Wadsworth, $p$-Henselian field: $K$-theory, Galois cohomology, and graded Witt rings, Pacific J. Math. 105 (1983), no. 2, 473–496. MR 691616
- Roger Ware, Valuation rings and rigid elements in fields, Canadian J. Math. 33 (1981), no. 6, 1338–1355. MR 645230, DOI https://doi.org/10.4153/CJM-1981-103-0
- Roger Ware, Galois groups of maximal $p$-extensions, Trans. Amer. Math. Soc. 333 (1992), no. 2, 721–728. MR 1061780, DOI https://doi.org/10.1090/S0002-9947-1992-1061780-8
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 19F99, 12J15, 19C99, 12J99
Retrieve articles in all journals with MSC (2000): 19F99, 12J15, 19C99, 12J99
Additional Information
Ido Efrat
Affiliation:
Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, Be’er-Sheva 84105, Israel
Email:
efrat@math.bgu.ac.il
Received by editor(s):
March 24, 2005
Published electronically:
April 24, 2007
Additional Notes:
This research was supported by the Israel Science Foundation grant No. 8008/02–1
Article copyright:
© Copyright 2007
American Mathematical Society